1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Artist 52 [7]
3 years ago
10

The slotted arm OA rotates about a fixed axis through O. At the instant under consideration, θ = 36°, θ˙ = 36 deg/s, and θ¨ = 26

deg/s2. Determine the magnitude of the force F applied by arm OA and the magnitude of the force N applied by the sides of the slot to the 0.5-kg slider B. Neglect all friction, and let L = 0.72 m. The motion occurs in a vertical plane.
Physics
1 answer:
xz_007 [3.2K]3 years ago
4 0

Answer:

   F = 0.0545 N

Explanation:

Let's use Newton's second law for rotational movement

        τ = I α

The moment of inertia for a bar supported by some ends is

       I = 1/3 m L²

Torque is

            τ = F L

Let's replace

         F L = 1/3 m L² α

         F = 1/3 m L α

Let's reduce angular acceleration to SI units

       Alf = 26º / s² (π rad / 180º) = 0.454 rad / s²

Let's calculate

          F = 1/3  0.5  0.72  0.454

          F = 0.0545 N

You might be interested in
Which of the following is not a galilean moon?
REY [17]
The answer is B) titan
7 0
3 years ago
Read 2 more answers
Two 8.0 Ω lightbulbs are connected in a 12 V parallel circuit. What is the power of both glowing bulbs?
kati45 [8]

Answer:

96w

Explanation:

p=Iv..where v=12 and I=8.0

8 0
2 years ago
What is the approximate velocity of the object at 5 seconds ? .
Gnoma [55]

Answer:

do you have an image?

Explanation:

3 0
3 years ago
An object that has kinetic energy must what ?
11Alexandr11 [23.1K]

An object that has kinetic energy must be <em>moving</em>.

The formula for an object's kinetic energy is

KE = (1/2) · (the object's mass) · <u><em>(the object's speed)²</em></u>

As you can see from the formula, if the object has no speed, then its kinetic energy is zero.  That's why kinetic energy is usually called the "energy of motion", and if an object HAS kinetic energy, then that tells you right away that it must be moving.

4 0
3 years ago
Firemen are shooting a stream of water at a burning building. A high-pressure hose shoots out the water with a speed of 26.0 m/s
alekssr [168]

Answer:

a) θ = 58.3º

b) vfh = 13.7 m/s

c) g = -9.8 m/s2

d) h = 22.2 m

e) vfb = 15.5 m/s

Explanation:

a)

  • Assuming that gravity is the only influence that causes an acceleration to the water, due to it is always downward, since both directions are independent each other, in the horizontal direction, the water moves at a constant speed.
  • Since the velocity vector has a magnitude of 26.0 m/s, we can find its horizontal component as follows:
  • vₓ₀ = v * cos θ (1)
  • where θ is the angle between the water and the horizontal axis (which we define as the x-axis, being positive to the right).
  • Applying the definition of average velocity, taking the end of the hose like the origin, and making t₀ = 0, we can write the following expression:

        x_{f} = v_{ox} * t = v_{o} * cos \theta * t  (2)

  • Replacing by the givens of xf = 41.0m, t = 3.00 s, and v=26.0 m/s, we can solve for the angle of elevation θ, as follows:

        cos \theta = \frac{x_{f} }{v*t} = \frac{41.0m}{26.0m/s*3.00s} = 0.526 (3)

  • ⇒θ = cos⁻¹ (0.526) = 58.3º (4)

b)

  • At the highest point in its trajectory, just before starting to fall, the vertical component of the velocity is just zero.
  • Since the horizontal component keeps constant during all the journey, we can conclude that the speed at this point is just v₀ₓ, that we can find easily from (1) replacing by the values of v and cos θ, as follows:
  • vₓ₀ = v * cos θ = 26.0 m/s * 0.526 = 13.7 m/s. (5)

c)

  • At any point in the trajectory, the only acceleration present is due to the action of gravity, which accepted value is -9.8 m/s2 (taking the upward direction on the vertical y-axis as positive)

d)

  • Since we know the time when the water strikes the building, it will be the same for the vertical movement, so, we can use the kinematic equation for vertical displacement, as follows:

       \Delta y = v_{oy} * t - \frac{1}{2} *g*t^{2} (6)

  • Our only unknown remains v₀y, which can be obtained in the same way than the horizontal component:
  • v₀y = v * sin θ = 26.0 m/s * 0.85 = 22.1 m/s (7)
  • Replacing (7) in (6), we get:

       \Delta y = 22.1 m/s* 3.0s - \frac{1}{2} *9.8m/s2*(3.00s)^{2} = 22.2 m (8)

e)

  • When the water hits the building the velocity vector, has two components, the horizontal vₓ and the vertical vy.
  • The horizontal component, since it keeps constant, is just v₀x:
  • v₀ₓ = 13.7 m/s
  • The vertical component can be found applying the definition of acceleration (g in this case), solving for the final velocity, as follows:

       v_{fy} = v_{oy} - g*t  (9)

  • Replacing by the time t (a given), g, and  v₀y from (7), we can solve (9) as follows:

       v_{fy} = 22.1 m/s - 9.8m/s2*3.00s = -7.3 m/s  (10)

  • Since we know the values of both components (perpendicular each other), we can find the magnitude of the velocity vector (the speed, i.e. how fast is it moving), applying the Pythagorean Theorem to v₀ₓ and v₀y, as follows:

       v_{f} = \sqrt{(13.7m/s)^{2} +(-7.3m/s)^{2}} = 15.5 m/s (11)

3 0
3 years ago
Other questions:
  • 10 PTS. If an electromagnetic wave has a frequency of 8 ⋅ 10^14 H z , what is its wavelength? Use λ=V/F. The speed of light is 3
    10·1 answer
  • The phases of the moon are the changing appearances of the moon, as seen from Earth. Which phase happens immediately after a thi
    12·2 answers
  • He goes 12km north 6km east 12km south 3km west what is the distance and displacement
    9·1 answer
  • Please help !!! HELP
    6·1 answer
  • Which segments show changes of state that absorb heat? Check all that apply.
    9·1 answer
  • I messed up the first time, 1. What was most interesting about this episode to you?
    12·1 answer
  • I have no idea so i'm screwed please help me
    6·1 answer
  • What is the fastest motion that can be measured in any frame of reference?
    14·1 answer
  • SKILL LEVEL:
    5·1 answer
  • 11. Amy is in a car that is moving at a speed of 50 kilometers/hour. If she moves a total distance of
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!