The weight of a person increase when the elevator is going up.
<h3>
Weight of the person in the elevator</h3>
The weight of the person in the elevator is calculated as follows;
<h3>When the person is going up</h3>
F = ma + mg
F = m(a + g)
where;
- a is acceleration of the person
- g is acceleration due to gravity
<h3>When the person is going down</h3>
F = mg - ma
F = m(g - a)
Thus, the weight of a person increase when the elevator is going up.
Learn more about weight here: brainly.com/question/2337612
#SPJ1
A psychologist who would claim that a client's personal experience and viewpoint influence behavior more than events in reality would probably use cognitive psychology mixed with developmental aspects to explain the behavior and personality of a person.
Answer:
answer is a pedigree chart :)
Explanation:
The angular momentum is defined as,

Acording to this text we know for conservation of angular momentum that

Where
is initial momentum
is the final momentum
How there is a difference between the stick mass and the bug mass, we define that
Mass of the bug= m
Mass of the stick=10m
At the point 0 we have that,

Where l is the lenght of the stick which is also the perpendicular distance of the bug's velocity
vector from the point of reference (O), and ve is the velocity
At the end with the collition we have

Substituting




Applying conservative energy equation we have


Replacing the values and solving

Substituting
l=\frac{13}{0.54(9.8)}

Answer:
10.8s
Explanation:
Given parameters:
Force on the car = 3250N
Distance = 35m
Power = 11375W
Unknown:
Time taken = ?
Solution:
To solve this problem;
Power is the rate at which work is done
Power =
Work done = force x distance = 3250 x 35 = 123200J
Now;
11375 =
11375t = 123200
t = 10.8s