The decrease in energy in the hydrogen molecule is what allows its formation on Earth, but in stars the great energy of the explosion has a kinetic energy so great that electrons cannot bind to another atom, which is why hydrogen has a single atom.
The hydrogen molecule is a form that two hydrogen atoms share their electrons decreasing the total energy of the molecule, this bond has a covalent and hydrogen bonding characteristic.
In a stellar explosion, the energy released increases the energy of the hydrogen atom, for which we have two possibilities:
- Its electron is lost, so we are in a single proton, in the case of structures where the proton and the elector are
- The hydrogen atom remains but the energy of the atom is very high so the kinetic energy of the electron prevents the electron from being shared by the other atom and the molecule cannot be formed.
When the atoms are thrown into space, the separation between them is so high that it does not allow electrons to be shared and molecules cannot be formed either.
In conclusion, the decrease in energy in the hydrogen molecule is what allows its formation on Earth, but in stars the great energy of the explosion has a kinetic energy so great that electrons cannot join another atom, which is why the hydrogen has only one atom.
Learn more about the Hydrogen atom here:
brainly.com/question/22464200
The quest to put Americans on the moon before the Soviets do. During the Space Race, a couple of astronauts went up into space only to be tragically killed in an explosion.
Because mass does not change from place to place but weight does change from place to place... why? because weight is the amount of gravitational force on an object and mass is the amount of matter in an object. mars has less gravitational force so an object will weigh less than it really weighs there
Answer:
Explanation:
Work done on the lever ( input energy ) = force applied x input distance
= 24 N x 2m = 48 J
Work done by the lever ( output energy ) = load x output distance
= 72 N x 0.5m = 36 J
efficiency = output energy / input energy
= 36 J / 48 J
= 3 / 4 = .75
In percentage terms efficiency = 75 % .