C3H8+ 5 O2 --> 3 CO2 + 4 H2O
44 g. --------> 72 g
33.3 g. --------> x

Answer: The theoretical yield of H2O is 54.5
Answer:
See explanation
Explanation:
In the Rutherford experiment, alpha particles were directed at the same spot on a thin gold foil.
As the alpha particles hit the foil, most of the alpha particles went through the foil. In Rutherford's interpretation, most of the particles went through because the atom consisted largely of empty space.
However, some of the alpha particles were deflected through large angles, in Rutherford's interpretation, the deflected alpha particles had hit the dense positive core of the atom which he called the nucleus.
This accounted for their scattering through large angles throughout the foil in all directions.
<span>What classification should this reaction have?
Cu + 2AgNO</span>₃ ⇒ Cu(NO₃)₂<span> + 2Ag
</span><span>single replacement</span>
Answer:
lattice parameter = 5.3355x10^-8 cm
atomic radius = 2.3103x10^-8 cm
Explanation:
known data:
p=0.855 g/cm^3
atomic mass = 39.09 g/mol
atoms/cell = 2 atoms
Avogadro number = 6.02x10^23 atom/mol
a) the lattice parameter:
Since potassium has a cubic structure, its volume is equal to:
v = [(atoms/cell)x(atomic mass)/(p)x(Avogadro number)]
substituting values:
v =[(2)x(39.09)/(0.855x6.02x10^23)]=1.5189x10^-22 cm^3
but as the cell volume is
a^3 =v
cm
for a BCC structure, the atomic radius is equal to

Answer:
Increase
Explanation:
If temperature is held constant, the equation is reduced to Boyle's law. Therefore, if you decrease the pressure of a fixed amount of gas, its volume will increase.