The large piece of jewelry that has a mass of 132.6 g and when is submerged in a graduated cylinder that initially contains 48.6 ml water and the volume increases to 61.2 ml once the piece of jewelry is submerged, has a density of: 10.523 g/ml
To solve this problem the formulas and the procedures that we have to use are:
Where:
- d= density
- m= mass
- v= volume
- v(f) = final volume
- v(i) = initial volume
Information about the problem:
- m = 132.6 g
- v(i) = 48.6 ml
- v(f) = 61.2 ml
- v = ?
- d =?
Applying the volume formula we get:
v = v(f)-v(i)
v = 61.2 ml - 48.6 ml
v = 12.6 ml
Applying the density formula we get:
d = m/v
d = 132.6 g/12.6 ml
d = 10.523 g/ml
<h3>What is density?</h3>
It is a physical quantity that expresses the ratio of the body mass to the volume it occupies.
Learn more about density in: brainly.com/question/1354972
#SPJ4
During photosynthesis, 5 moles of water are needed to produce 150 grams of glucose. The correct option is D.
<h3>What is photosynthesis?</h3>
It is the process by which green plants and some other organisms use sunlight to synthesize nutrients from carbon dioxide and water.
- Step 1: Write the balanced equation for photosynthesis.
6 CO₂ + 6 H₂O ⇒ C₆H₁₂O₆ + 6 O₂
- Step 2: Convert 150 g of C₆H₁₂O₆ to moles.
The molar mass of C₆H₁₂O₆ is 180.16 g/mol.
150 g × 1 mol/180.16 g = 0.833 mol
- Step 3: Calculate the moles of water required to form 0.833 moles of C₆H₁₂O₆
The molar ratio of H₂O to C₆H₁₂O₆ is 6:1.
0.833 mol C₆H₁₂O₆ × 6 mol H₂O/1 mol C₆H₁₂O₆ = 5.00 mol H₂O
During photosynthesis, 5 moles of water are needed to produce 150 grams of glucose. The correct option is D.
Learn more about photosynthesis here: brainly.com/question/3529377
#SPJ1
Particles are dissolved
Light beam passes through invisibly
Brownian movement is not discernible
I have gotten these answers checked and they are right.