<span>2.5 m/s going upward.
In the situation described, Erica and Danny undergo a non-elastic collision which will conserve their combined momentum. Since Erica is stationary, her momentum is 0. And since Danny is moving upward at 4.7 m/s his momentum is 43 kg * 4.7 m/s = 202.1 kg*m/s. Assuming that both Erica and Danny will be moving as a joined system, their combined mass is 38 kg + 43 kg = 81 kg. Since the momentum will be the same, their velocity will be 202.1 kg*m/s / 81 kg = 2.495061728 m/s. Since we only have 2 significant figures in the provided data, rounding the result to 2 significant figures gives a velocity of 2.5 m/s going upward.</span>
Use the impulse-momentum theorem.

Substitute your known values:

Hope this helps!
Answer:
I will answer this in English, we can translate it to:
Why if you charge a mate by an amount of time you are not doing work?
This happens because work is defined as the displacement done by a force:
W = d*F
where W is work, d is the distance, and F is the force.
This means that the amount of time that you are charging your mate does not affect the mechanical work, the only time that you are doing work is when you are lifting him.