Answer:
<u><em>note:</em></u>
<u><em>find the attached solution:</em></u>
Since the bag was at rest, its initial momentum is zero. The velocity of the ball before collision is 500 ms-1.
<h3>Linear momentum</h3>
The term momentum in physics refers the product of mass and velocity. If we know mass of the object and its velocity, then we calculate the momentum.
Momentum before collision for the bullet = 0.01 kg × v
Momentum before collision for the bag = 0
Momentum after collision for the bag and bullet = (0.01 kg + 0.49 kg) 10 = 5 Kgms-1
The velocity of the bullet before collision = 0.01 kg × v + 0 = 5 Kgms-1
v = 5 Kgms-1/0.01 kg
v = 500 ms-1
Learn more about momentum: brainly.com/question/904448
You are at rest with respect to the car.
You are in motion with respect to the School.
Answer:
The combined velocity is 8.61 m/s.
Explanation:
Given that,
The mass of a truck, m = 2800 kg
Initial speed of truck, u = 12 m/s
The mass of a car, m' = 1100 kg
Initial speed of the car, u' = 0
We need to find the combined velocity the moment they stick together. Let it is V. Using the conservation of momentum.

So, the combined velocity is 8.61 m/s.
A wave is a disturbance that moves along a medium from one end to the other. If one watches an ocean wave moving along the medium (the ocean water), one can observe that the crest of the wave is moving from one location to another over a given interval of time. The crest is observed to cover distance. The speed of an object refers to how fast an object is moving and is usually expressed as the distance traveled per time of travel. In the case of a wave, the speed is the distance traveled by a given point on the wave (such as a crest) in a given interval of time. In equation form,