1) Answer: A hot pack feels warm when chemicals in it combine.
Explanation: Reactions or process in which heat is released(produced) are known as exothermic reactions or process and those in which the heat is absorbed are known as endothermic reactions or process.
If a beaker feels cools when chemical in it react then it means the chemicals have absorbed the heat energy from its surroundings and so it is an example of an endothermic process.
A hot pack feels warm when chemicals in it combine means the energy is released in the chemical reaction and so it is an example of an exothermic process.
Plants use the sun's energy for photosynthesis which is a process of forming food for the plants. Energy acts as a reactant in this process and so it is an example of endothermic process.
Frying an egg by heating it on a stove is an example of an endothermic process as the heat is required to fry the egg.
So, the only exothermic process is the second one, "A hot pack feels warm when chemicals in it combine."
2) In the given equation, heat is written as a product means the heat is released in the equation and so it is an example of an exothermic reaction.
So, the correct choice is the last one " It is exothermic because energy is released."
Answer:
that would just create a bigger mess if you flush it with ice water it can reduce swelling and help dull your nerves
Explanation:
<span>We are given the initial amount of 1 million carbon-14 atoms and the final amount which is 1/16 of the current atmospheric 14C levels. Also, the half life of carbon is </span>5,750 years. WE can use the decay formula
Aₓ = A₀e^-(ln2/t1/2)t
1,000,000(1/16) = (1,000,000)e^-(ln2/5750)t
t = 23,000 years
Amount of a substance (called the solute) that dissolves in a unit volume of a liquid substance (called the solvent) to form a saturated solution under specified conditions of temperature and pressure.Solubility is expressed usually as moles of solute per 100 grams of solvent.
Answer:
There are 1.51 x 1024 molecules of carbon dioxide in 2.50 moles of carbon dioxide.
Explanation: