Answer:
D
Explanation:
I would say this awnser because its the only one that makes sence to me
Answer: y = x * 1dollars - 30dollars
Explanation:
Giving that the delivery cost in dollar is potent for all x > = 50 pounds of wght
Y = (x - 50)*1 dollar + c ...equ 1
Y = delivery cost equation in dollars
x = weigt of baggage for delivery
c = 20dollars = down payment for the first 50 pound weight of baggage
Equ 1 becomes
Y = (x)dollars - 50 dollars + 20 dollars
Y = (x) dollars -30 dollars
Answer:
Now find the temperature of each surface, we have that the the temperature on the left side of the wall is T∞₁ - Q/h₁A and the temperature on the right side of the wall is T∞₂ + Q/h₂A.
Note: kindly find an attached diagram to the complete question given below.
Sources: The diagram/image was researched and taken from Slader website.
Explanation:
Solution
Let us consider the rate of heat transfer through the plane wall which can be obtained from the relations given below:
Q = T∞₁ -T₁/1/h₁A = T₁ -T₂/L/kA =T₂ -T∞₂/1/h₂A
= T∞₁ - T∞₂/1/h₁A + L/kA + 1/h₂A
Here
The convective heat transfer coefficient on the left side of the wall is h₁, while the convective heat transfer coefficient on the right side of the wall is h₂. the thickness of the wall is L, the thermal conductivity of the wall material is k, and the heat transfer area on one side of the wall is A. Q is refereed to as heat transfer.
Thus
Let us consider the convection heat transfer on the left side of the wall which is given below:
Q = T∞₁ -T₁/1/h₁A
T₁ = T∞₁ - Q/h₁A
Therefore the temperature on the left side of the wall is T∞₁ - Q/h₁A
Now
Let us consider the convection heat transfer on the left side of the wall which is given below:
Q= T₂ -T∞₂/1/h₂A
T₂ = T∞₂ + Q/h₂A
Therefore the temperature on the right side of the wall is T∞₂ + Q/h₂A
Answer:
a) Mechanical efficiency (
)=63.15% b) Temperature rise= 0.028ºC
Explanation:
For the item a) you have to define the mechanical power introduced (Wmec) to the system and the power transferred to the water (Pw).
The power input (electric motor) is equal to the motor power multiplied by the efficiency. Thus,
.
Then, the power transferred (Pw) to the fluid is equal to the flow rate (Q) multiplied by the pressure jump
. So
.
The efficiency is defined as the ratio between the output energy and the input energy. Then, the mechanical efficiency is 
For the b) item you have to consider that the inefficiency goes to the fluid as heat. So it is necessary to use the equation of the heat capacity but in a "flux" way. Calling <em>H</em> to the heat transfered to the fluid, the specif heat of the water and
the density of the water:
[/tex]
Finally, the temperature rise is:

Answer:
In ancient Greek Mythology, Amphitrite was a sea goddess and wife of Poseidon and the queen of the sea. She was a daughter of Doris and Nereus (or Oceanus and Tethys). Under the influence of the Olympian pantheon, she became the consort of Poseidon and was later used as a symbolic representation of the sea.