When the object is at the top of the hill it has the most potential energy. If it is sitting still, it has no kinetic energy. As the object begins to roll down the hill, it loses potential energy, but gains kinetic energy. The potential energy of the position of the object at the top of the hill is getting converted into kinetic energy. Hope this helped. :)
A! Good luck on your test!
Answer: elastic potential energy = 20.27 J
Explanation:
Given that the
Mass M = 0.470 kg
Height h = 4.40 m
Spring constant K = 85 N/m
The maximum elastic potential will be equal to the maximum kinetic energy experienced by the block.
But according to conservative of energy, the maximum kinetic energy is equal to the maximum potential energy experienced by the block of mass M.
That is
K .E = P.E = mgh
Where g = 9.8m/s^2
Substitutes all the parameters into the formula
K.E = 0.470 × 9.8 × 4.4
K.E = 20.27 J
Where K.E = maximum elastic potential energy stored in the spring during the motion of the blocks after the collision which is 20.27J.
Answer:
Earth is always moving. Each day, the Earth makes one complete rotation on its axis. ... As Earth rotates, it seems like the sun is moving across the sky, but it's really the Earth that is spinning. It takes 24 hours to complete one rotation, which is why there are 24 hours in one day.
Explanation:
The power that heat pump draws when running will be 6.55 kj/kg
A heat pump is a device that uses the refrigeration cycle to transfer thermal energy from the outside to heat a building (or a portion of a structure).
Given a heat pump used to heat a house runs about one-third of the time. The house is losing heat at an average rate of 22,000 kJ/h and if the COP of the heat pump is 2.8
We have to determine the power the heat pump draws when running.
To solve this question we have to assume that the heat pump is at steady state
Let,
Q₁ = 22000 kj/kg
COP = 2.8
Since heat pump used to heat a house runs about one-third of the time.
So,
Q₁ = 3(22000) = 66000 kj/kg
We known the formula for cop of heat pump which is as follow:
COP = Q₁/ω
2.8 = 66000 / ω
ω = 66000 / 2.8
ω = 6.66 kj/kg
Hence the power that heat pump draws when running will be 6.55 kj/kg
Learn more about heat pump here :
brainly.com/question/1042914
#SPJ4