1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Brrunno [24]
3 years ago
8

The index of refraction of light varies from color to color. True or False?

Physics
1 answer:
lys-0071 [83]3 years ago
8 0
The index of refraction of light varies from color to color. TRUE.
You might be interested in
What is the Ozone layer?
yaroslaw [1]
"<span>a layer in the earth's stratosphere at an altitude of about 6.2 miles (10 km) containing a high concentration of ozone, which absorbs most of the ultraviolet radiation reaching the earth from the sun."

Hope this helps!
</span>
4 0
3 years ago
Read 2 more answers
What is the difference between clastic and bioclast?
Grace [21]
The main difference is the source of the sediment that the rock is formed from. Clastic sedimentary rocks are formed mostly from silicate sediment derived by the breakdown of pre-existing rocks. Bioclastic rocks are formed by the accumulation of fragmented organic remains (such as shell-sand) - i.e. the sediment is of biological rather than non-biological origin.
8 0
3 years ago
A photon of wavelength 2.78 pm scatters at an angle of 147° from an initially stationary, unbound electron. What is the de Brogl
Elena-2011 [213]

Answer:

2.07 pm

Explanation:

The problem given here is the very well known Compton effect which is expressed as

\lambda^{'}-\lambda=\frac{h}{m_e c}(1-cos\theta)

here, \lambda is the initial photon wavelength, \lambda^{'} is the scattered photon wavelength, h is he Planck's constant, m_e is the free electron mass, c is the velocity of light, \theta is the angle of scattering.

Given that, the scattering angle is, \theta=147^{\circ}

Putting the respective values, we get

\lambda^{'}-\lambda=\frac{6.626\times 10^{-34} }{9.11\times 10^{-31}\times 3\times 10^{8} } (1-cos147^\circ ) m\\\lambda^{'}-\lambda=2.42\times 10^{-12} (1-cos147^\circ ) m.\\\lambda^{'}-\lambda=2.42(1-cos147^\circ ) p.m.\\\lambda^{'}-\lambda=4.45 p.m.

Here, the photon's incident wavelength is \lamda=2.78pm

Therefore,

\lambda^{'}=2.78+4.45=7.23 pm

From the conservation of momentum,

\vec{P_\lambda}=\vec{P_{\lambda^{'}}}+\vec{P_e}

where,\vec{P_\lambda} is the initial photon momentum, \vec{P_{\lambda^{'}}} is the final photon momentum and \vec{P_e} is the scattered electron momentum.

Expanding the vector sum, we get

P^2_{e}=P^2_{\lambda}+P^2_{\lambda^{'}}-2P_\lambda P_{\lambda^{'}}cos\theta

Now expressing the momentum in terms of De-Broglie wavelength

P=h/\lambda,

and putting it in the above equation we get,

\lambda_{e}=\frac{\lambda \lambda^{'}}{\sqrt{\lambda^{2}+\lambda^{2}_{'}-2\lambda \lambda^{'} cos\theta}}

Therefore,

\lambda_{e}=\frac{2.78\times 7.23}{\sqrt{2.78^{2}+7.23^{2}-2\times 2.78\times 7.23\times cos147^\circ }} pm\\\lambda_{e}=\frac{20.0994}{9.68} = 2.07 pm

This is the de Broglie wavelength of the electron after scattering.

6 0
4 years ago
Help ASAP!<br> Everything on screenshot
BARSIC [14]

Answer:

For the first one, its B) cities B and C

I'm not so sure, but I hope this helps.

7 0
3 years ago
Two 10-cm-diameter charged rings face each other, 21.0 cm apart. Both rings are charged to +40.0 nC. What is the electric field
Katyanochek1 [597]

Complete question:

Two 10-cm-diameter charged rings face each other, 21.0 cm apart. Both rings are charged to +40.0 nC. What is the electric field strength  at the midpoint between the two rings ?

Answer:

The electric field strength at the mid-point between the two rings is zero.

Explanation:

Given;

diameter of each ring, d = 10 cm = 0.1 m

distance between the rings, r = 21.0 cm = 0.21 m

charge of each ring, q = 40 nC = 40 x 10⁻⁹ C

let the midpoint between the two rings = x

The electric field strength  at the midpoint between the two rings is given as;

E_{mid} = E_{right} +E_{left}\\\\E_{right}  = \frac{KQ}{(x^2 + r^2)^\frac{2}{3} } \\\\E_{leftt}  = -\ \frac{KQ}{(x^2 + r^2)^\frac{2}{3} }\\\\E_{mid} = \frac{KQ}{(x^2 + r^2)^\frac{2}{3} }  - \frac{KQ}{(x^2 + r^2)^\frac{2}{3} } = 0

Therefore, the electric field strength at the mid-point between the two rings is zero.

7 0
3 years ago
Other questions:
  • Two particles oscillate in simple harmonic motion along a common straight-line segment of length 1.0 m. Each particle has a peri
    13·1 answer
  • The atomic mass of an element is A. the sum of the protons and electrons in one atom of the element. B. twice the number of prot
    11·1 answer
  • ¿que es el calor latente
    5·1 answer
  • Select the words that make the sentence a true statement.
    8·2 answers
  • A person wears a hearing aid that uniformly increases the sound level of all audible frequencies of sound by 28.1 dB. The hearin
    8·1 answer
  • A boy travels 12km east wards to a point B and then 5km southwards to another point C. Calculate the difference between the magn
    8·1 answer
  • A raft has a mass of 152 kg. When a
    9·2 answers
  • What is the name of the particle that compounds are made of?
    7·1 answer
  • If we rub a rubber rod against a piece of fur the rod gains a negative change. Why does the rod have a negative charge?
    10·1 answer
  • . In a wave, …………………… is carried from one place to another.
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!