He can increase the total energy of the system by spinning the top faster.
<h3>What is energy?</h3>
The term energy refers to the ability to do work. The total energy of the system refers to the gravitational potential energy and the rotational energy of the top.
Hence, he can increase the total energy of the system by spinning the top faster.
Learn more about energy:brainly.com/question/1932868
#SPJ1
I believe the answer is A. Have a blessed day.
Answer: 0.3872m
Explanation:
q= 100nC --> 100x10^-9 C
k= 9x10^9 Nm^2/C^2
E= 6kN/C --> 600 N/C
r=?
-->
Despejas "r"
Resuelves
<h3>

(la x es por, no es una variable)</h3><h3>r= 0.3872983346m</h3>
<h2>
<em><u>⇒</u></em>Answer:</h2>
In the standing broad jump, one squats and then pushes off with the legs to see how far one can jump. Suppose the extension of the legs from the crouch position is 0.600 m and the acceleration achieved from this position is 1.25 times the acceleration due to gravity, g . How far can they jump? State your assumptions. (Increased range can be achieved by swinging the arms in the direction of the jump.)
Step-by-Step Solution:
Solution 35PE
This question discusses about the increased range. So, we shall assume that the angle of jumping will be as the horizontal range is maximum at this angle.
Step 1 of 3<
/p>
The legs have an extension of 0.600 m in the crouch position.
So, m
The person is at rest initially, so the initial velocity will be zero.
The acceleration is m/s2
Acceleration m/s2
Let the final velocity be .
Step 2 of 3<
/p>
Substitute the above given values in the kinematic equation ,
m/s
Therefore, the final velocity or jumping speed is m/s
Explanation: