1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Doss [256]
3 years ago
13

A uniform, thin, solid door has height 2.20 m, width 0.870 m, and mass 23.0 kg. (a) find its moment of inertia for rotation on i

ts hinges. (b) is any piece of data unnecessary
Physics
1 answer:
vampirchik [111]3 years ago
8 0
The solution for this problem is:


a. The moment of inertia of the thin door rotating about the hinges axis is given by:

I = 1/3 mw^2 is to solve for the inertia, where: m is the mass and w is the width


= 23.0 x 0.870^2 / 3

= 17.4087 / 3

= 5.8029 kg m^2


b. The height of the door is not required for this calculation.
You might be interested in
Charged beads are placed at the corners of a square in the various configurations shown in
Akimi4 [234]

Answer:

The consecutive charge configuration has a more intense field than alternating

Explanation:

In each corner we place a different account there are only two different settings, see attached.

In the case of alternating charging (+ - + -) see diagram 1, the electric field in the center is canceled in pairs, resulting in a zero field

In the case of consecutive loads (+ + - -) in this case we have a result between the two charges, therefore the total field is

          E = 2 k q / ra2 a cos 45

The consecutive charge configuration has a more intense field than alternating

8 0
3 years ago
What is Motion ????? ​
Mama L [17]

Answer:

\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}

\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}

5 0
3 years ago
Read 2 more answers
The valence electrons of metals are weakly attracted to the parent nuclei, so the electrons break free and float. The moving ele
siniylev [52]

The valence electrons of metals are weakly attracted to the parent nuclei, so the electrons break free and float. The moving electrons form a electron <u>negative</u> blanket that binds the atomic <u>positive</u> nuclei together, forming a metallic bond.

So the answers are <u>{ Negative }</u> and <u>{ Positive }.</u>  

Please vote Brainliest (:

5 0
3 years ago
Read 2 more answers
Red laser light from a He-Ne laser (λ = 632.8 nm) creates a second-order fringe at 53.2° after passing through the grating. What
Svetlanka [38]

Explanation:

It is given that,

Wavelength of red laser light, \lambda=632.8\ nm=632.8\times 10^{-9}\ m

The second order fringe is formed at an angle of, \theta=53.2^{\circ}

For diffraction grating,

d\ sin\theta=n\lambda

d=\dfrac{n\lambda}{sin\theta}, n = 2

d=\dfrac{2\times 632.8\times 10^{-9}}{sin(53.2)}

d=1.58\times 10^{-6}\ m

The wavelength λ of light that creates a first-order fringe at 22 is given by :

\lambda=d\ sin\theta

\lambda=1.58\times 10^{-6}\ sin(22)

\lambda=5.91\times 10^{-7}\ m

\lambda=591\ nm

Hence, this is the required solution.

6 0
3 years ago
An ordinary flashlight battery has a potential difference of 1.2 V between its positive and negative terminals. How much work mu
Maru [420]

The work done to transport an electron from the positive to the negative terminal is 1.92×10⁻¹⁹ J.

Given:

Potential difference, V = 1.2 V

Charge on an electron, e = 1.6 × 10⁻¹⁹ C

Calculation:

We know that the work done to transport an electron from the positive to the negative terminal is given as:

W.D = (Charge on electron)×(Potential difference)

       = e × V

       = (1.6 × 10⁻¹⁹ C)×(1.2 V)

       = 1.92 × 10⁻¹⁹ J

Therefore, the work done in bringing the charge from the positive terminal to the negative terminal is 1.92 × 10⁻¹⁹ J.

Learn more about work done on a charge here:

<u>brainly.com/question/13946889</u>

#SPJ4

4 0
2 years ago
Other questions:
  • PLZ ANSWER ASAP
    13·1 answer
  • What color will a star be with a surface temperature of 5000–6000 K?
    15·2 answers
  • A sailboat starts from rest and accelerates at a rate of 0.21 m/s^2 over a distance of 280 m. find the magnitude of the boat's f
    6·1 answer
  • A ball of mass m= 450.0 g traveling at a speed of 8.00 m/s impacts a vertical wall at an angle of θi =45.00 below the horizontal
    10·1 answer
  • The function​ s(t) represents the position of an object at time t moving along a line. Suppose s( 1 )=123 and s( 3 )=173. Find t
    9·1 answer
  • On a camping trip on the Oregon coast, you decide to hike to the ocean, but you are not sure of the direction. The time is 4:00
    8·2 answers
  • If the man is on the moon, where the acceleration due to gravity is gm = 5.30 ft/s2, determine his weight in pounds.
    8·1 answer
  • INTRO PHYSICS: Two planets are 3 x 10^7 km apart. Planet A has a mass of 8 x 10^24 kg. Planet B has a mass of 1 x 10^25 kg. What
    8·1 answer
  • When the rudder moves to the left the plane will move to the right or left?
    11·2 answers
  • how is the rate of evporation of a liquid affected by temperature, the surface area of a liquid exposed to air
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!