Answer: The height of the cloud = 394.55 m
Explanation:
The observer is 500m away from the spotlight.
Let x be the distance from the observer to the interception of the segment of the height, h with the floor. The equations are thus:
Tan 45° = h/x ... eq1
Tan 75° = h/(500- x ) ... eq2
From eq 1, Tan 45° = 1, therefore eq1 becomes:
h = x ... eq3
Put eq3 into eq2
Tan 75° = h/(500- h)
h = ( 500 - h ) Tan 75°
h = 500Tan 75° - hTan75°
h + h Tan 75° = 500 Tan 75°
h ( 1 + Tan 75° ) = 500 Tan75°
h = 500Tan75°/ (1 + Tan 75°)
h= 1866.02 / 4.73
h = 394.55m
To develop this problem it is necessary to apply the concepts related to the uni-axial deflection of bodies.
From the expression of Hooke's law we have to

Where,
E= Young's modulus
The strain
And substituting P/A for stress and
for strain gives that

Where,
P = Force
A = Area
L = Length
Therefore this can be re-arranged to give

If we want to calculate the deformation per unit area then we can also rewrite the equation as

Replacing with our values we have to


Therefore the posion ratio would be



Therefore the Poisson's ratio for this material is 0.4238
I think it is B.<span>Thermal energy decreases as water vapor rises from the ocean
</span>
At the present time, the only way we know of that light can get shifted
toward the blue end of the spectrum is the Doppler effect ... wavelengths
appear shorter than they should be when the source is moving toward us.
IF that's true in the case of the Andromeda galaxy, it means the galaxy is
moving toward us.
We use the same reasoning to conclude that all the galaxies whose light is red-shifted are moving away from us. That includes the vast majority of all galaxies that we can see, and it strongly supports the theory of the big bang
and the expanding universe.
If somebody ever comes along and discovers a DIFFERENT way that light
can get shifted to new, longer or shorter wavelengths, then pretty much all
of modern Cosmology will be out the window. There's a lot riding on the
Doppler effect !
I think minerals can be both.