Answer: You do not specify what is being asked for. ∆E? ∆H?
∆E = (430 - 238) J = 192 J
∆H = 430 J
Explanation:
If asked for the value of ∆H the answer is simply the change in heat, and in the question, it states introduction of 430 J of heat is causing the system to expand.
Therefore ∆H = 430 J
If asked for ∆E, we know that ∆E = ±q (heat) + work (-P∆V) = ±q + w
The question states that 238 J of work are done AND the system expanded
(work is negative because expansion means work is done BY the system, releasing energy/heat... Conversely, if the system were compressed, work is done ON the system, absorbing heat/energy)
Therefore, ∆E = (430 - 238) J = 192 J
Given data:
- It is a graphical display where the data is grouped in to ranges
- A diagram consists rectangles, whose area is proportional to frequency of a variable and whose width is equal to the class interval.
- It is an accurate representation of the distribution of numerical data.
<em>From Figure:</em>
Each box in the graph (small rectangle box) is assumed to be one download. So, in the graph the time between 8 p.m to 9 p.m, the number of downloads are 8.75 approximately (because the last box is incomplete, therefore 8 complete boxes and 9th is more than half).
<em>So, We conclude that the total number of downloads are approximately 9 in the time span of 8 p.m. to 9 p.m.</em>
a ray of light is incident towards a plane mirror at an angles of 30degrees with the mirror surface. what will be the angles of reflection is 60degree.
Answer:
1. the electromagnetic wave.
Explanation:
Mathematically,
wavelength = velocity ÷ frequency
A mechanical wave is a wave that is not capable of transmitting its energy through a vacuum. Mechanical waves require a medium in order to transport their energy from one location to another. A sound wave is an example of a mechanical wave. Sound waves are incapable of traveling through a vacuum.
Electromagnetic waves of different frequency are called by different names since they have different sources and effects on matter, increasing frequency decreases wavelength.
Sound waves (which obviously travel at the speed of sound) are much slower than electromagnetic waves (which travel at the speed of light.)
Electromagnetic waves are much faster than sound waves and If the Velocity of the wave increases and the frequency is constant, the wavelength also increases.
Answer:
okjjjjkkkkjjjjhhjjikhggbvvh