When calculated energy transferred between objects use the definition of heat as
Explanation:
It is given that,
Mass of Millersburg Ferry, m = 13000 kg
Velocity, v = 11 m/s
Applied force, F = 10⁶ N
Time period, t = 20 seconds
(a) Impulse is given by the product of force and time taken i.e.



(b) Impulse is also given by the change in momentum i.e.





(c) For new velocity,



Hence, this is the required solution.
Answer:
Angular velocity is same as frequency of oscillation in this case.
ω =
x ![[\frac{L^{2}}{mK}]^{3/14}](https://tex.z-dn.net/?f=%5B%5Cfrac%7BL%5E%7B2%7D%7D%7BmK%7D%5D%5E%7B3%2F14%7D)
Explanation:
- write the equation F(r) = -K
with angular momentum <em>L</em>
- Get the necessary centripetal acceleration with radius r₀ and make r₀ the subject.
- Write the energy of the orbit in relative to r = 0, and solve for "E".
- Find the second derivative of effective potential to calculate the frequency of small radial oscillations. This is the effective spring constant.
- Solve for effective potential
- ω =
x ![[\frac{L^{2}}{mK}]^{3/14}](https://tex.z-dn.net/?f=%5B%5Cfrac%7BL%5E%7B2%7D%7D%7BmK%7D%5D%5E%7B3%2F14%7D)
Watts=V*I so in turn I= W/V 375/125 = 3
It would take 3 Amps