We have all the charges for q1, q2, and q3.
Since k = 8.988x10^2, and N=m^2/c^2
F(1) = F (2on1) + F (3on1)
F(2on1) = k |q1 q2| / r(the distance between the two)^2
k^ | 3x10^-6 x -5 x 10^-6 | / (.2m)^2
F(2on1) = 3.37 N
Since F1 is 7N,
F(1) = F (2on1) + F (3on1)
7N = 3.37 N + F (3on1)
Since it wil be going in the negative direction,
-7N = 3.37 N + F (3on1)
F(3on1) = -10.37N
F(3on1) = k |q1 q3| / r(the distance between the two)^2
r^2 x F(3on1) = k |q1 q3|
r = sqrt of k |q1 q3| / F(3on1)
= .144 m (distance between q1 and q3)
0 - .144m
So it's located in -.144m
Thank you for posting your question. I hope that this answer helped you. Let me know if you need more help.
PART A)
By Snell's law we know that

here we know that



now from above equation we have


so it will refract by angle 39.3 degree
PART B)
Here as we can see that image formed on the other side of lens
So it is a real and inverted image
Also we can see that size of image is lesser than the size of object here
Here we can use concave mirror to form same type of real and inverted image
PART C)
As per the mirror formula we know that



so image will form at 30 cm from mirror
it is virtual image and smaller in size
To solve the problem we will simply perform equivalence between both expressions. We will proceed to place your units and develop your internal operations in case there is any. From there we will compare and look at its consistency


At the same time we have that



Therefore there is not have same units and both are not consistent and the correct answer is B.
Answer:
I would say A but am not sure