Answer:
Part A the answer is the dielectric constant.
Part B Mica- mylar- paper- quartz
Explanation:
The capacity of a capacitor is given by
C = ε ε₀ A / d
Where the dielectric constant (ε) is the value of the material between the plates of the capacitor, we see that as if value increases the capacity also increases.
Another magnitude that we must take into account that the maximum working voltage, the greater the safer is the capacitor
the flexibility of the material must also be taken into account
Part A the answer is the dielectric constant.
Pate B order the materials from best to worst
Mica. The best ever
Mylar Flexible
Paper Low capacity, low working voltage, flexible
Quartz high dielectric, but brittle
Answer:
work = 1728
Power = 134
Explaination:
by using the formula,
Work(W)= Force(F)×Distance(D)
<h2>
and</h2>
Power(P)= Work(W)/Time taken(T)
Answer:
the magnitude of the torque on the permanent magnet = 7.34×10⁻³ Nm
the potential energy (in J) of the system consisting of the permanent magnet and the magnetic field provided by the coils = -1.0485 ×10⁻² J
Explanation:
The torque is given by :

where ;
m = 0.160 A.m²
B = 0.0800 T
θ = 35°
So the magnitude of the torque N = mBsinθ
N = (0.160)(0.0800)(sin 35°)
N = 0.007341
N = 7.34×10⁻³ Nm
Hence, the magnitude of the torque on the permanent magnet = 7.34×10⁻³ Nm
b) The potential energy 
U = -mBcosθ
U = (- 0.160)(0.0800)(cos 45)
U = -0.010485
U = -1.0485 ×10⁻² J
Thus, the potential energy (in J) of the system consisting of the permanent magnet and the magnetic field provided by the coils = -1.0485 ×10⁻² J
Answer:
Option D, only on the portion of the Earth facing directly toward the Moon
Explanation:
Tides are caused by the gravitational pull of moon. The part of earth that faces the moon experiences the highest gravitational force and hence the high tides will occur in this regions only. The regions that do not faces the moon experiences low tides. It is the gravity of moon that attracts the ocean water towards itself.
Hence, Option D is correct