the resistance of the cable is 582.9 ohms
we are given the length of the cable which is 3 km, of 1.5 mm in, the diameter and resistivity of copper which is 1.72 m
The formula we are referring to for calculating the resistance of the cable is
R = ρl/A.
As there are 19 strands of copper conductors, so the resistance will be
R = 19( ρl/A)
Here ρ is the resisitivity = 1.72 , l is the length = 3(1+0.05)*10³3= 3150 m
A=pie/4(1.5 x 10⁻³)^2 =1.766 x 10⁻⁶ =1.766 x 10^-6
Substituting the values in the formula we get
R = 19 ( 1.72*3150 )/1.766 x 10⁻⁶
= 582.9 ohm
To know more about resistance refer to the linkhttps://brainly.com/question/14547003?referrer=searchResults.
#SPJ4
Answer:
e) 120m/s
Explanation:
When the ball reaches its highest point, its velocity becomes zero, meaning
.
where
is the initial velocity.
Solving for
we get
which is the time it takes the ball to reach the highest point.
Now, after the ball has reached its highest point, it turns around and falls downwards. After time
since it had reached the highest point, the ball has traveled downwards and the velocity
it has gained is
,
and we are told that this is twice the initial velocity
; therefore,

which gives

Thus, the total time taken to reach velocity
is


This
, we are told, is 36 seconds; therefore,

and solving for
we get:



which from the options given is choice e.
1) 4°C : It has the highest density as shown on the graph.
2) Water expands when it freezes, making it less dense than just water.
3) The ice would sink to the bottom, then the rest of the water would freeze as well, the entire lake/river/whatever will freeze eliminating the organisms that live there.
Answer:
F=ma is the relationship where, F is force, m is mass and a is acceleration.
Newton's second law states that the unbalanced force applied to the object accelerates the object which is directly proportional to the force and inversely to the mass.
If we apply force to a toy car then It will accelerate.
This is how Newton's second law of motion is verified.