Answer:
The energy transferred between samples of matter because of a difference in their temperatures is called a. heat.
Explanation:
The first law of thermodynamics establishes that when two bodies with different temperatures are put in contact they will find thermic equilibrium to a final temperature by transferring heat. Thus the correct answer is (a).
Thermochemistry is the study of the transformations of heat energy on the chemical reactions. Chemical kinetics is the study of the rate of chemical reactions. And temperature is the measure of the heat.
Answer:
Salt (NaCl) is an ionic bond that consists of Sodium (Na) which is a metal with positive charge combines with Chlorine (Cl), a nonmetal with a negative charge.
Explanation:
Answer:
The Solar System moves through the galaxy with about a 60° angle between the galactic plane and the planetary orbital plane. The Sun appears to move up-and-down and in-and-out with respect to the rest of the galaxy as it revolves around the Milky Way
Explanation:
Hope you like it
Answer:
The ideal gas law can be used in stoichiometry problems in which chemical reactions involve gases. Standard temperature and pressure (STP) are a useful set of benchmark conditions to compare other properties of gases. At STP, gases have a volume of 22.4 L per mole.
Answer:
A sample of an ideal gas has a volume of 2.21 L at 279 K and 1.01 atm. Calculate the pressure when the volume is 1.23 L and the temperature is 299 K.
You need to apply the ideal gas law PV=nRT
You have the pressure, P=1.01 atm
you have the volume, V = 2.21 L
The ideal gas constant R= 0.08205 L. atm/ mole.K at 273 K
find n = PV/RT = (1.01 atm x 2.21 L / 0.08205 L.atm/ mole.K x 273 K)
n= 0.1 mole, Now find the pressure for n=0.1 mole, T= 299K and
L=1.23 L
P=nRT/V= 0.1mole x 0.08205 (L.atm/ mole.K x 299 k)/ 1.23 L
= 1.994 atm
Explanation: