<span>earth would be thrown off its balance and nature would be in danger of too many resources and not enough resources </span>
Answer:
It is calculated by dividing Resistance, R, by Inductive reactance, XL.
Explanation:
Q is called the Q factor of a resonance circuit. In a parallel resonance circuit, it is calculated by finding the ratio of the power stored in the circuit to the power distributed in the circuit. It is a way of measuring the quality of a circuit or how effective the circuit is.
Q factor is the inverse in the resonance series circuit.
Q factor of a resonance parallel circuit,
<h3>
Q = R/XL</h3>
R = Resistance
XL = Inductive reactance
Answer:
Δx = 1.2 m
Explanation:
The CHANGE of spring length) (Δx) can be found using PS = ½kΔx²
Δx = √(2PS/k) = √(2(450)/650) = 1.17669... ≈ 1.2 m
The actual length of the spring is unknown as it varies with material type, construction method, extension or compression, and other variables we have no clue about.
Answer:
The minimum coefficient of friction is 0.544
Solution:
As per the question:
Radius of the curve, R = 48 m
Speed of the car, v = 16 m/s
To calculate the minimum coefficient of static friction:
The centrifugal force on the box is in the outward direction and is given by:

where
= coefficient of static friction
The net force on the box is zero, since, the box is stationary and is given by:
Answer: 
Explanation:
When a number is written in scientific notation (representing the number using powers of base ten) it is expressed so that it contains a digit in the place of the units and all other digits after the decimal point, multiplied by the respective exponent.
Then, the significant figures (or significant digits) will be the digits that are before the power of ten.
Now, in the case of the number 299,792,458 if we want to write it with three significant digits, we have to write it in scientific notation as:
