A displacement is a vector quantity that takes into account the shortest distance from the starting point to the endpoint.
The given above gave a time interval in minutes which needs to be converted to seconds. Given that each minute is 60 seconds, 5 minutes equal 300 seconds. To determine the distance, multiply time with speed. The product is 225 m.
Thus, the displacement is 225 m.
Please be determined and being hardworking person do not rely on the other people to make your problems solved
Explanation:
Ok?
At the highest point in its trajectory, the ball's acceleration is zero but its velocity is not zero.
<h3>What's the velocity of the ball at the highest point of the trajectory?</h3>
- At the highest point, the ball doesn't go more high. So its vertical velocity is zero.
- However, the ball moves horizontal, so its horizontal component of velocity is non - zero i.e. u×cosθ.
- u= initial velocity, θ= angle of projection
<h3>What's the acceleration of the ball at the highest point of projectile?</h3>
- During the whole projectile motion, the earth exerts the gravitational force with a acceleration of gravity along vertical direction.
- But as there's no acceleration along vertical direction, so the acceleration along vertical direction is zero.
Thus, we can conclude that the acceleration is zero and velocity is non-zero at the highest point projectile motion.
Disclaimer: The question was given incomplete on the portal. Here is the complete question.
Question: Player kicks a soccer ball in a high arc toward the opponent's goal. At the highest point in its trajectory
A- neither the ball's velocity nor its acceleration are zero.
B- the ball's acceleration points upward.
C- the ball's acceleration is zero but its velocity is not zero.
D- the ball's velocity points downward.
Learn more about the projectile motion here:
brainly.com/question/24216590
#SPJ1
Answer:
The shortest de Broglie wavelength for the electrons that are produced as photoelectrons is 0.81 nm
Explanation:
Given;
wavelength of ultraviolet light, λ = 270 nm
work function of the metal, φ = 2.3 eV = 2.3 x 1.602 x 10⁻¹⁹ J = 3.685 x 10⁻¹⁹ J
The energy of the ultraviolet light is given by;

The energy of the incident light is related to kinetic energy of the electron and work function of the metal by the following equation;
E = φ + K.E
K.E = E - φ
K.E = (7.362 x 10⁻¹⁹ J) - (3.685 x 10⁻¹⁹ J )
K.E = 3.677 x 10⁻¹⁹ J
K.E = ¹/₂mv²
mv² = 2K.E
velocity of the electron is given by;

the shortest de Broglie wavelength for the electrons is given by;

Therefore, the shortest de Broglie wavelength for the electrons that are produced as photoelectrons is 0.81 nm