<u>Answer:</u> Copper is getting oxidized and is a reducing agent. Silver is getting reduced and is oxidizing agent.
<u>Explanation:</u>
Oxidation reaction is defined as the reaction in which an atom looses its electrons. Here, oxidation state of the atom increases.
Reduction reaction is defined as the reaction in which an atom gains electrons. Here, the oxidation state of the atom decreases.
Oxidizing agents are defined as the agents which oxidize other substance and itself gets reduced. These agents undergoes reduction reactions.
Reducing agents are defined as the agents which reduces the other substance and itself gets oxidized. These agents undergoes reduction reactions.
For the given chemical reaction:
The half reactions for the above reaction are:
<u>Oxidation half reaction:</u>
<u>Reduction half reaction:</u>
From the above reactions, copper is loosing its electrons. Thus, it is getting oxidized and is considered as a reducing agent.
Silver is gaining electrons and thus is getting reduced and is considered as an oxidizing agent.
Answer:
2.01
Explanation:
First, let's convert grams to moles
(Na) 22.99 + (F) 18.998 = 41.988
Every mole of NaF is 41.988 grams
21/41.988 = 0.500143 moles of NaF
For every Cr+3, we will need 2 NaF, so Cr+3 will be half of NaF
0.500143/2 = 0.250071
molarity = moles/liters
0.250071/0.125 = 2.0057 M
ANSWER: True
EXPLANATION: An inference is a logical conclusion based on observations.
Hope it helps u!
The third launch ( with 300 N force) had the greatest acceleration of the tennis ball
<h3>Further explanation </h3>
Newton's 2nd law explains that the acceleration produced by the resultant force on an object is proportional and in line with the resultant force and inversely proportional to the mass of the object
∑F = m. a
F = force, N
m = mass = kg
a = acceleration due to gravity, m / s²
From the above equation it has been shown that the force acting on the object is directly proportional to its acceleration, so <em>the greater the force exerted on the object, the greater the acceleration of the object produced.</em>