Answer:
41 g
Explanation:
We have a buffer formed by a weak acid (C₆H₅COOH) and its conjugate base (C₆H₅COO⁻ coming from NaC₆H₅COO). We can find the concentration of C₆H₅COO⁻ (and therefore of NaC₆H₅COO) using the Henderson-Hasselbach equation.
pH = pKa + log [C₆H₅COO⁻]/[C₆H₅COOH]
pH - pKa = log [C₆H₅COO⁻] - log [C₆H₅COOH]
log [C₆H₅COO⁻] = pH - pKa + log [C₆H₅COOH]
log [C₆H₅COO⁻] = 3.87 - (-log 6.5 × 10⁻⁵) + log 0.40
[C₆H₅COO⁻] = [NaC₆H₅COO] = 0.19 M
We can find the mass of NaC₆H₅COO using the following expression.
M = mass NaC₆H₅COO / molar mass NaC₆H₅COO × liters of solution
mass NaC₆H₅COO = M × molar mass NaC₆H₅COO × liters of solution
mass NaC₆H₅COO = 0.19 mol/L × 144.1032 g/mol × 1.5 L
mass NaC₆H₅COO = 41 g
Answer:
Ionic bond is formed by the opposite ions attraction between the 2 atoms in an ionically bonded compound. The two ions i.e. Cation and Anions are formed by oxidation and reduction reactions respectively. General Ionic formula is as follow,
Mⁿ⁺ + Nⁿ⁻ → MN
where;
Mⁿ⁺ = Cation
Nⁿ⁻ = Anion
MN = Salt
Explanation:
Ionic bond is the electrostatic forces of attraction between positively charged cations and negatively charged Anions. These forces are very stronger resulting in increasing several physical properties of Ionic compounds like melting point and boiling point e.t.c.
Example:
Sodium Chloride:
NaCl is formed by Na⁺ cation and Cl⁻ anion as follow,
Oxidation of Na;
2 Na → 2 Na⁺ + 2 e⁻
Reduction of Cl₂;
Cl₂ + 2 e⁻ → 2 Cl⁻
Crystal Lattice formation is as follow,
Na⁺ + Cl⁻ → NaCl
The correct answer is oceanic crust, 80 km, Hope this helps let me know.
A mineral is a naturally occurring , solid, crystalline substance with a specific chemical composition. Minerals are usually inorganic and are formed by ionic, covalent or metallic bonding. Ionic bonds are the dominant type of bonds in mineral strictures. 90% of all minerals are ionic compounds. Minerals bonded by covalent bonds are strong, for example carbon bonded together to form diamond. Metallic bonds are a type of covalent bonds where the atoms have a strong tendency to lose electrons and pack together as cations.
Answer:
-1160kj/mol
Explanation:
the reaction is exothermic because heat is released to the environment