Answer:
a) R = ρ₀ L /π(r_b² - R_a²)
, b) ρ₀ = V / I π (r_b² - R_a²) / L
Explanation:
a) The resistance of a material is given by
R = ρ l / A
where ρ is the resistivity, l is the length and A is the area
the length is l = L and the resistivity is ρ = ρ₀
the area is the area of the cylindrical shell
A = π r_b² - π r_a²
A = π (r_b² - r_a²)
we substitute
R = ρ₀ L /π(r_b² - R_a²)
b) The potential difference is related to current and resistance by ohm's law
V = i R
we subsist the expression of resistance
V = I ρ₀ L /π (r_b² - R_a²)
ρ₀ = V / I π (r_b² - R_a²) / L
Answer: d) the presence of solidified lava flows on the Moon
Explanation:
A geological activity means an occurrence of event such as volcanic eruption, earthquake, sedimentation, erosion etc. The revolution of the Moon around the Earth
, the axial tilt of the Moon or the phases of the Moon are not surface features. hence, these events cannot provide the evidence of geological activity in the past of Moon.
The surface features of moon such as Mares, Craters, mountains, Rays and rills are the proof of some geological activity on the Moon. Mares are the dark patches on the moon's surface formed of solidified lava. Due to negligible atmosphere on the moon, the meteors strike its surface and cause craters to form. Thus, the correct answer is d.
120 is your answer. 120 mL = 120 cm^3
Answer: <span>D. A bimetallic strip bends so that the steel is on the outside curve
</span>
When something has an increased temperature, its volume will expand. Then, if the temperature drops, its volume should be smaller. From there option A and B are out since the liquid in thermometer is expand or move up.
When you put two kinds of different metal with a different coefficient of thermal expansion, the outer curve metal will be the one with lesser coefficient when temperature drop. Since the question about drop in temperature then the metal should be bend
Brass will expand 1.5 times more than the steel so the outer curve would be the steel.