Answer:
F = 156.3 N
Explanation:
Let's start with the top block, apply Newton's second law
F - fr = 0
F = fr
fr = 52.1 N
Now we can work with the bottom block
In this case we have two friction forces, one between the two blocks and the other between the block and the surface. In the exercise, indicate that the two friction coefficients are equal
we apply Newton's second law
Y axis
N - W₁ -W₂ = 0
N = W₁ + W₂
as the two blocks are identical
N = 2W
X axis
F - fr₁ - fr₂ = 0
F = fr₁ + fr₂
indicates that the lower block is moving below block 1, therefore the upper friction force is
fr₁ = 52.1 N
fr₁ = μ N
a
s the normal in the lower block of twice the friction force is
fr₂ = μ 2N
fr₂ = 2 μ N
fr₂ = 2 fr₁
we substitute
F = fr₁ + 2 fr₁
F = 3 fr₁
F = 3 52.1
F = 156.3 N
Answer:
n=6.56×10¹⁵Hz
Explanation:
Given Data
Mass=9.1×10⁻³¹ kg
Radius distance=5.3×10⁻¹¹m
Electric Force=8.2×10⁻⁸N
To find
Revolutions per second
Solution
Let F be the force of attraction
let n be the number of revolutions per sec made by the electron around the nucleus then the centripetal force is given by
F=mω²r......................where ω=2π n
F=m4π²n²r...............eq(i)
as the values given where
Mass=9.1×10⁻³¹ kg
Radius distance=5.3×10⁻¹¹m
Electric Force=8.2×10⁻⁸N
we have to find n from eq(i)
n²=F/(m4π²r)

a) For the motion of car with uniform velocity we have ,
, where s is the displacement, u is the initial velocity, t is the time taken a is the acceleration.
In this case s = 520 m, t = 223 seconds, a =0 
Substituting

The constant velocity of car a = 2.33 m/s
b) We have 
s = 520 m, t = 223 seconds, u =0 m/s
Substituting

Now we have v = u+at, where v is the final velocity
Substituting
v = 0+0.0209*223 = 4.66 m/s
So final velocity of car b = 4.66 m/s
c) Acceleration = 0.0209 
Answer:
Asteroids smaller than planets and meteroids are small piece of an asteroid burns up upon enetering Earths atmosphere
Answer:

Explanation:
In an ideal transformer, the ratio of the voltages is proportional to the ratio of the number of turns of the windings. In this way:

In this case:

Therefore, using the previous equation and the data provided, let's solve for
:

Hence, the number of loops in the secondary is approximately 41667.