The answer is D. <span> There would be a decrease in the population of marine organisms.
</span>
The kinematics for the vertical launch we can enter the initial velocity is 11.76 m / s
Given parameters
To find
Kinematics is the part of physics that establishes the relationships between the position, velocity, and acceleration of bodies.
In this case we have a vertical launch
y = y₀ + v₀ t - ½ g t²
Where y and y₀ are the final and initial positions, respectively, v₀ the initial velocity, g the acceleration of gravity (g = 9.8 m / s²) and t the time
With the ball in hand, its position is zero
0 = 0 + v₀ t - ½ g t²
v₀ t - ½ g t² = 0
v₀ = ½ g t
Let's calculate
v₀ = ½ 9.8 2.4
v₀ = 11.76 m / s
In conclusion using kinematics for the vertical launch we can enter the initial velocity is 11.76 m / s
Learn more about vertical launch kinematics here:
brainly.com/question/15068914
Answer:
3x10⁴v
Explanation:
Using
Wavelength= h/ √(2m.Ke)
880nm = 6.6E-34/√ 2.9.1E-31 x me
Ke= 6.6E-34/880nm x 18.2E -31.
5.6E-27/18.2E-31
= 3 x 10⁴ Volts
The frequency of a genotype is how often it occurs. This can be obtained by:
number of occurrences / total population
= 160 / 1000
= 0.16 or 16%