Answer:
negative
Explanation:
positive charges attract negative charges and vice versa. and are possible to nullify
Anything times zero is zero
The representation of this problem is shown in Figure 1. So our goal is to find the vector
![\overrightarrow{R}](https://tex.z-dn.net/?f=%5Coverrightarrow%7BR%7D)
. From the figure we know that:
![\left | \overrightarrow{A} \right |=12m \\ \\ \left | \overrightarrow{B} \right |=20m \\ \\ \theta_{A}=20^{\circ} \\ \\ \theta_{B}=40^{\circ}](https://tex.z-dn.net/?f=%5Cleft%20%7C%20%5Coverrightarrow%7BA%7D%20%5Cright%20%7C%3D12m%20%5C%5C%20%5C%5C%20%5Cleft%20%7C%20%5Coverrightarrow%7BB%7D%20%5Cright%20%7C%3D20m%20%5C%5C%20%5C%5C%20%5Ctheta_%7BA%7D%3D20%5E%7B%5Ccirc%7D%20%5C%5C%20%5C%5C%20%5Ctheta_%7BB%7D%3D40%5E%7B%5Ccirc%7D)
From geometry, we know that:
![\overrightarrow{R}=\overrightarrow{A}+\overrightarrow{B}](https://tex.z-dn.net/?f=%5Coverrightarrow%7BR%7D%3D%5Coverrightarrow%7BA%7D%2B%5Coverrightarrow%7BB%7D)
Then using
vector decomposition into components:
![For \ A: \\ \\ A_x=-\left | \overrightarrow{A} \right |sin\theta_A=-12sin(20^{\circ})=-4.10 \\ \\ A_y=\left | \overrightarrow{A} \right |cos\theta_A=12cos(20^{\circ})=11.27 \\ \\ \\ For \ B: \\ \\ B_x=-\left | \overrightarrow{B} \right |cos\theta_B=-20cos(40^{\circ})=-15.32 \\ \\ B_y=-\left | \overrightarrow{B} \right |sin\theta_B=-20sin(40^{\circ})=-12.85](https://tex.z-dn.net/?f=For%20%5C%20A%3A%20%5C%5C%20%5C%5C%20A_x%3D-%5Cleft%20%7C%20%5Coverrightarrow%7BA%7D%20%5Cright%20%7Csin%5Ctheta_A%3D-12sin%2820%5E%7B%5Ccirc%7D%29%3D-4.10%20%5C%5C%20%5C%5C%20A_y%3D%5Cleft%20%7C%20%5Coverrightarrow%7BA%7D%20%5Cright%20%7Ccos%5Ctheta_A%3D12cos%2820%5E%7B%5Ccirc%7D%29%3D11.27%20%5C%5C%20%5C%5C%20%5C%5C%20For%20%5C%20B%3A%20%5C%5C%20%5C%5C%20B_x%3D-%5Cleft%20%7C%20%5Coverrightarrow%7BB%7D%20%5Cright%20%7Ccos%5Ctheta_B%3D-20cos%2840%5E%7B%5Ccirc%7D%29%3D-15.32%20%5C%5C%20%5C%5C%20B_y%3D-%5Cleft%20%7C%20%5Coverrightarrow%7BB%7D%20%5Cright%20%7Csin%5Ctheta_B%3D-20sin%2840%5E%7B%5Ccirc%7D%29%3D-12.85)
Therefore:
![R_x=A_x+B_x=-4.10-15.32=-19.42m \\ \\ R_y=A_y+B_y=11.27-12.85=-1.58m](https://tex.z-dn.net/?f=R_x%3DA_x%2BB_x%3D-4.10-15.32%3D-19.42m%20%5C%5C%20%5C%5C%20R_y%3DA_y%2BB_y%3D11.27-12.85%3D-1.58m)
So if you want to find out <span>
how far are you from your starting point you need to know the magnitude of the vector
![\overrightarrow{R}](https://tex.z-dn.net/?f=%5Coverrightarrow%7BR%7D)
, that is:
</span>
![\left | \overrightarrow{R} \right |= \sqrt{R_x^2+R_y^2}=\sqrt{(-19.42)^2+(-1.58)^2}=\boxed{19.48m}](https://tex.z-dn.net/?f=%5Cleft%20%7C%20%5Coverrightarrow%7BR%7D%20%5Cright%20%7C%3D%0A%5Csqrt%7BR_x%5E2%2BR_y%5E2%7D%3D%5Csqrt%7B%28-19.42%29%5E2%2B%28-1.58%29%5E2%7D%3D%5Cboxed%7B19.48m%7D)
Finally, let's find the <span>
compass direction of a line connecting your starting point to your final position. What we are looking for here is an angle that is shown in Figure 2 which is an angle defined with respect to the positive x-axis. Therefore:
</span>
Answer:
![\Delta p=2.27\frac{kg\cdot m}{s}](https://tex.z-dn.net/?f=%5CDelta%20p%3D2.27%5Cfrac%7Bkg%5Ccdot%20m%7D%7Bs%7D)
Explanation:
The momentum change is defined as:
![\Delta p=p_f-p_i\\\Delta p=mv_f-mv_i\\\Delta p=m(v_f-v_i)(1)](https://tex.z-dn.net/?f=%5CDelta%20p%3Dp_f-p_i%5C%5C%5CDelta%20p%3Dmv_f-mv_i%5C%5C%5CDelta%20p%3Dm%28v_f-v_i%29%281%29)
Taking the downward motion as negative and the upward motion as positive, we have:
![v_f=2\frac{m}{s}(2)\\v_i=-2\frac{m}{s}(3)](https://tex.z-dn.net/?f=v_f%3D2%5Cfrac%7Bm%7D%7Bs%7D%282%29%5C%5Cv_i%3D-2%5Cfrac%7Bm%7D%7Bs%7D%283%29)
Replacing (2) and (3) in (1):
![\Delta p=567*10^{-3}kg(2\frac{m}{s}-(-2\frac{m}{s}))\\\Delta p=2.27\frac{kg\cdot m}{s}](https://tex.z-dn.net/?f=%5CDelta%20p%3D567%2A10%5E%7B-3%7Dkg%282%5Cfrac%7Bm%7D%7Bs%7D-%28-2%5Cfrac%7Bm%7D%7Bs%7D%29%29%5C%5C%5CDelta%20p%3D2.27%5Cfrac%7Bkg%5Ccdot%20m%7D%7Bs%7D)
Answer:
1. ![v=14.2259\ m.s^{-1}](https://tex.z-dn.net/?f=v%3D14.2259%5C%20m.s%5E%7B-1%7D)
2. ![F_T=25.8924\ N](https://tex.z-dn.net/?f=F_T%3D25.8924%5C%20N)
3. ![\lambda=29.6373\ m](https://tex.z-dn.net/?f=%5Clambda%3D29.6373%5C%20m)
Explanation:
Given:
- mass of slinky,
![m=0.87\ kg](https://tex.z-dn.net/?f=m%3D0.87%5C%20kg)
- length of slinky,
![L=6.8\ m](https://tex.z-dn.net/?f=L%3D6.8%5C%20m)
- amplitude of wave pulse,
![A=0.23\ m](https://tex.z-dn.net/?f=A%3D0.23%5C%20m)
- time taken by the wave pulse to travel down the length,
![t=0.478\ s](https://tex.z-dn.net/?f=t%3D0.478%5C%20s)
- frequency of wave pulse,
![f=0.48\ Hz=0.48\ s^{-1}](https://tex.z-dn.net/?f=f%3D0.48%5C%20Hz%3D0.48%5C%20s%5E%7B-1%7D)
1.
![\rm Speed\ of\ wave\ pulse=Length\ of\ slinky\div time\ taken\ by\ the\ wave\ to\ travel](https://tex.z-dn.net/?f=%5Crm%20Speed%5C%20of%5C%20wave%5C%20pulse%3DLength%5C%20of%5C%20slinky%5Cdiv%20time%5C%20taken%5C%20by%5C%20the%5C%20wave%5C%20to%5C%20travel)
![v=\frac{6.8}{0.478}](https://tex.z-dn.net/?f=v%3D%5Cfrac%7B6.8%7D%7B0.478%7D)
![v=14.2259\ m.s^{-1}](https://tex.z-dn.net/?f=v%3D14.2259%5C%20m.s%5E%7B-1%7D)
2.
<em>Now, we find the linear mass density of the slinky.</em>
![\mu=\frac{m}{L}](https://tex.z-dn.net/?f=%5Cmu%3D%5Cfrac%7Bm%7D%7BL%7D)
![\mu=\frac{0.87}{6.8}\ kg.m^{-1}](https://tex.z-dn.net/?f=%5Cmu%3D%5Cfrac%7B0.87%7D%7B6.8%7D%5C%20kg.m%5E%7B-1%7D)
We have the relation involving the tension force as:
![v=\sqrt{\frac{F_T}{\mu} }](https://tex.z-dn.net/?f=v%3D%5Csqrt%7B%5Cfrac%7BF_T%7D%7B%5Cmu%7D%20%7D)
![14.2259=\sqrt{\frac{F_T}{\frac{0.87}{6.8}} }](https://tex.z-dn.net/?f=14.2259%3D%5Csqrt%7B%5Cfrac%7BF_T%7D%7B%5Cfrac%7B0.87%7D%7B6.8%7D%7D%20%7D)
![202.3774=F_T\times \frac{6.8}{0.87}](https://tex.z-dn.net/?f=202.3774%3DF_T%5Ctimes%20%5Cfrac%7B6.8%7D%7B0.87%7D)
![F_T=25.8924\ N](https://tex.z-dn.net/?f=F_T%3D25.8924%5C%20N)
3.
We have the relation for wavelength as:
![\lambda=\frac{v}{f}](https://tex.z-dn.net/?f=%5Clambda%3D%5Cfrac%7Bv%7D%7Bf%7D)
![\lambda=\frac{14.2259}{0.48}](https://tex.z-dn.net/?f=%5Clambda%3D%5Cfrac%7B14.2259%7D%7B0.48%7D)
![\lambda=29.6373\ m](https://tex.z-dn.net/?f=%5Clambda%3D29.6373%5C%20m)