Lets do
We know
The rate of change of velocity is acceleration .


Integrate both sides

As acceleration is constant .Take it outside of integral .On velocity we can take limit u to v and time from 0 to t

Hence



Answer:
a) please find the attachment
(b) 3.65 m/s^2
c) 2.5 kg
d) 0.617 W
T<weight of the hanging block
Explanation:
a) please find the attachment
(b) Let +x be to the right and +y be upward.
The magnitude of acceleration is the same for the two blocks.
In order to calculate the acceleration for the block that is resting on the horizontal surface, we will use Newton's second law:
∑Fx=ma_x
T=m1a_x
14.7=4.10a_x
a_x= 3.65 m/s^2
c) <em>in order to calculate m we will apply newton second law on the hanging </em>
<em> block</em>
<em> </em>∑F=ma_y
T-W= -ma_y
T-mg= -ma_y
T=mg-ma_y
T=m(g-a_y)
a_x=a_y
14.7=m(9.8-3.65)
m = 2.5 kg
<em>the sign of ay is -ve cause ay is in the -ve y direction and it has the same magnitude of ax</em>
d) calculate the weight of the hanging block :
W=mg
W=2.5*9.8
=25 N
T=14.7/25
=0.617 W
T<weight of the hanging block
Answer:
hope this helps
Explanation:
one in which a positively charged nucleus is surrounded by one or more negatively charged electrons.
Answer:
The answer to your question is given below
Explanation:
Since both object A and B were dropped from the same height and the air resistance is negligible, both object A and B will get to the ground at the same time.
From the question, we were told that object A falls through a distance to dA at time t and object B falls through a distance of dB at time 2t.
Remember, both objects must get to the ground at the same time..!
Let the time taken for both objects to get to the ground be t.
Time A = Time B = t
But B falls through time 2t
Therefore,
Time A = Time B = 2t
Height = 1/2gt^2
For A:
Time = 2t
dA = 1/2 x g x (2t)^2
dA = 1/2g x 4t^2
For B
Time = t
dB = 1/2 x g x t^2
Equating dA and dB
dA = dB
1/2g x 4t^2 = 1/2 x g x t^2
Cancel out 1/2, g and t^2
4 = 1
4dA = dB
Divide both side by 4
dA = 1/4 dB
Answer:
25
Explanation:
Velocity= change in displacement/ change in time
=100-0/4-0
=25