1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
almond37 [142]
3 years ago
5

Two uniformly charged conducting plates are parallel to each other. They each have area A. Plate #1 has a positive charge Q whil

e plate #2 has a charge −2 Q. Find the magnitude of the electric field at a point P in the gap. Assume that the separation between the plates is very small compared to the dimensions of the plates.
Engineering
1 answer:
Karo-lina-s [1.5K]3 years ago
5 0

Answer:

E = \frac{3Q}{2A\epsilon_0}

Explanation:

By Gauss Law for electric field:

E = \frac{\sigma}{2\epsilon_0}

Where \sigma is the charge density Q/A. Since we have 2 parallel  plates with different charge, the electric field at point P in the gap would be the sum of 2 field

E = E_1 + E_2

E = \frac{Q}{2A\epsilon_0} + \frac{2Q}{2A\epsilon_0}

E = \frac{3Q}{2A\epsilon_0}

You might be interested in
A thin-walled tube with a diameter of 6 mm and length of 20 m is used to carry exhaust gas from a smoke stack to the laboratory
Molodets [167]

Answer:

Explanation:

Mean temperature is given by

T_mean = \frac{T_i + T_ \infinity}{2}\\\\T_mean = \frac{200 + 15}{2}

Tmean = (Ti + T∞)/2

T_mean = 107.5^{0}

Tmean = 107.5⁰C

Tmean = 107.5 + 273 = 380.5K

Properties of air at mean temperature

v = 24.2689 × 10⁻⁶m²/s

α = 35.024 × 10⁻⁶m²/s

\mu = 221.6 × 10⁻⁷N.s/m²

\kappa = 0.0323 W/m.K

Cp = 1012 J/kg.K

Pr = v/α  = 24.2689 × 10⁻⁶/35.024 × 10⁻⁶

              = 0.693

Reynold's number, Re

Pv = 4m/πD²

where Re = (Pv * D)/\mu

Substituting for Pv

Re = 4m/(πD\mu)

     = (4 x 0.003)/( π × 6 ×10⁻³ × 221.6 × 10⁻⁷)

     = 28728.3

Since Re > 2000, the flow is turbulent

For turbulent flows, Use

Dittus - Doeltr correlation with n = 0.03

Nu = 0.023Re⁰⁸Pr⁰³ = (h₁D)/k

(h₁ × 0.006)/0.0323 = 0.023(28728.3)⁰⁸(0.693)⁰³

(h₁ × 0.006)/0.0323 = 75.962

h₁ = (75.962 × 0.0323)/0.006

h₁ = 408.93 W/m².K

4 0
3 years ago
Multiple Choice
mote1985 [20]
I think it’s manufacturing
7 0
3 years ago
5. A typical paper clip weighs 0.59 g and consists of BCC iron. Calculate (a) the number of
marta [7]

Answer:

(a) 3.185*10^{21} cells

(b) 6.37*10^{21} atoms

Explanation:

(a)

Volume, V of unit cell

V=(2.866*10^{-8})^{3}=2.354*10^{-23}

Number of unit cells, N

N=\frac {W_{mat}}{V\rho_{mat}} Where W_{mat} is weight of material and \rho_{mat} is density of material

N=\frac{0.59}{7.87*(2.354*10^{-23}}=3.185*10^{21} cells

(b)

Number of atoms in paper clip

This is a product of number of unit cells and number of atoms per cell

Since iron has 2 atoms per cell

Number of atoms of iron=3.185*10^{21} cells*2 atoms/cell=6.37*10^{21} atoms

8 0
3 years ago
An air compressor of mass 120 kg is mounted on an elastic foundation. It has been observed that, when a harmonic force of amplit
kupik [55]

Answer:

equivalent stiffness is 136906.78 N/m

damping constant is 718.96 N.s/m

Explanation:

given data

mass = 120 kg

amplitude = 120 N

frequency = 320 r/min

displacement = 5 mm

to find out

equivalent stiffness and damping

solution

we will apply here frequency formula that is

frequency ω = ω(n) √(1-∈ ²)      ......................1

here  ω(n) is natural frequency i.e = √(k/m)

so from equation 1

320×2π/60 = √(k/120) × √(1-2∈²)

k × ( 1 - 2∈²) = 33.51² ×120

k × ( 1 - 2∈²) = 134752.99    .....................2

and here amplitude ( max ) of displacement is express as

displacement = force / k  ×  (  \frac{1}{2\varepsilon \sqrt{1-\varepsilon ^2}})

put here value

0.005 = 120/k   ×  (  \frac{1}{2\varepsilon \sqrt{1-\varepsilon ^2}})  

k ×∈ × √(1-2∈²) = 1200       ......................3

so by equation 3 and 2

\frac{k\varepsilon \sqrt{1-\varepsilon^2})}{k(1-2\varepsilon^2)} = \frac{12000}{134752.99}

\varepsilon^{2} - \varepsilon^{4}  = 7.929 * 10^{-3} - 0.01585 * \varepsilon^{2}

solve it and we get

∈ = 1.00396

and

∈ = 0.08869

here small value we will consider so

by equation 2 we get

k × ( 1 - 2(0.08869)²) = 134752.99

k  = 136906.78 N/m

so equivalent stiffness is 136906.78 N/m

and

damping is express as

damping = 2∈ √(mk)

put here all value

damping = 2(0.08869) √(120×136906.78)

so damping constant is 718.96 N.s/m

7 0
3 years ago
Since the passing of the Utah GDL laws in 1999:
wlad13 [49]
The answer is b, I hope this helps you
7 0
3 years ago
Other questions:
  • A ring-shaped seal, made from a viscoelastic material, is used to seal a joint between two rigid pipes. When incorporated in the
    5·1 answer
  • Anyone have any good ways of revisiting <br> Or <br> Have any good study notes
    11·1 answer
  • A curve with 0.3 m constant radius contains a bead that is moving on it such that its rotational velocity is 3t2 sec-1. If the b
    12·1 answer
  • A small truck is to be driven down a 4% grade at 70 mi/h. The coefficient of road adhesion is 0.95, and it is known that the bra
    7·1 answer
  • There are a number of requirements that employers must do to protect their workers from caught-in or
    12·1 answer
  • In the following code, determine the values of the symbols here and there. Write the object code in hexadecimal. (Do not predict
    15·1 answer
  • When diagnosing engine noise, Technician A says a mechanical stethoscope may not be appropriate in pinpointing a squeaking drive
    14·1 answer
  • What could happen in the aviation
    5·1 answer
  • What is the difference between digital instruments and decimal scaled instruments to measure
    6·1 answer
  • One of the best ways to increase engine power and control detonation and preignition is to?
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!