1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
White raven [17]
2 years ago
12

How is the difference between science and engineering Best stated?

Engineering
1 answer:
stiv31 [10]2 years ago
8 0

Answer:Science is the body of knowledge that explores the physical and natural world. Engineering is the application of knowledge in order to design, build and maintain a product or a process

Explanation:

You might be interested in
Two small balls A and B with masses 2m and m respectively are released from rest at a height h above the ground. Neglecting air
statuscvo [17]

Answer:

The kinetic energy of A is twice the kinetic energy of B

Explanation:

5 0
4 years ago
You are evaluating the lifetime of a turbine blade. The blade is 4 cm long and there is a gap of 0.16 cm between the tip of the
Tcecarenko [31]

Answer:

Explanation:

Given conditions

1)The stress on the blade is 100 MPa

2)The yield strength of the blade is 175 MPa

3)The Young’s modulus for the blade is 50 GPa

4)The strain contributed by the primary creep regime (not including the initial elastic strain) was 0.25 % or 0.0025 strain, and this strain was realized in the first 4 hours.

5)The temperature of the blade is 800°C.

6)The formula for the creep rate in the steady-state regime is dε /dt = 1 x 10-5 σ4 exp (-2 eV/kT)

where: dε /dt is in cm/cm-hr σ is in MPa T is in Kelvink = 8.62 x 10-5 eV/K

Young Modulus, E = Stress, \sigma /Strain, ∈

initial Strain, \epsilon_i = \frac{\sigma}{E}

\epsilon_i = \frac{100\times 10^{6} Pa}{50\times 10^{9} Pa}

\epsilon_i = 0.002

creep rate in the steady state

\frac{\delta \epsilon}{\delta t} = (1 \times {10}^{-5})\sigma^4 exp^(\frac{-2eV}{kT} )

\frac{\epsilon_{initial} - \epsilon _{primary}}{t_{initial}-t_{final}} = 1 \times 10^{-5}(100)^{4}exp(\frac{-2eV}{8.62\times10^{-5}(\frac{eV}{K} )(800+273)K} )

but Tinitial = 0

\epsilon_{initial} - \epsilon _{primary}} = 0.002 - 0.003 = -0.001

\frac{-0.001}{-t_{final}} = 1 \times 10^{-5}(100)^{4}\times 10^{(\frac{-2eV}{8.62\times10^{-5}(\frac{eV}{K} )1073K} )}

solving the above equation,

we get

Tfinal = 2459.82 hr

3 0
3 years ago
If you are a mechanical engineer answer these questions:
Natasha_Volkova [10]

Answer:

1. Yes, they are all necessary.

2. Both written and verbal communication skills are of the utmost importance in business, especially in engineering. Communication skills boost you or your teams' performance because they provide clear information and expectations to help manage and deliver excellent work.

3 0
3 years ago
Two identical billiard balls can move freely on a horizontal table. Ball a has a velocity V0 and hits balls B, which is at rest,
Lyrx [107]

Answer:

Velocity of ball B after impact is 0.6364v_0 and ball A is 0.711v_0

Explanation:

v_0 = Initial velocity of ball A

v_A=v_0\cos45^{\circ}

v_B = Initial velocity of ball B = 0

(v_A)_n' = Final velocity of ball A

v_B' = Final velocity of ball B

e = Coefficient of restitution = 0.8

From the conservation of momentum along the normal we have

mv_A+mv_B=m(v_A)_n'+mv_B'\\\Rightarrow v_0\cos45^{\circ}+0=(v_A)_n'+v_B'\\\Rightarrow (v_A)_n'+v_B'=\dfrac{1}{\sqrt{2}}v_0

Coefficient of restitution is given by

e=\dfrac{v_B'-(v_A)_n'}{v_A-v_B}\\\Rightarrow 0.8=\dfrac{v_B'-(v_A)_n'}{v_0\cos45^{\circ}}\\\Rightarrow v_B'-(v_A)_n'=\dfrac{0.8}{\sqrt{2}}v_0

(v_A)_n'+v_B'=\dfrac{1}{\sqrt{2}}v_0

v_B'-(v_A)_n'=\dfrac{0.8}{\sqrt{2}}v_0

Adding the above two equations we get

2v_B'=\dfrac{1.8}{\sqrt{2}}v_0\\\Rightarrow v_B'=\dfrac{0.9}{\sqrt{2}}v_0

\boldsymbol{\therefore v_B'=0.6364v_0}

(v_A)_n'=\dfrac{1}{\sqrt{2}}v_0-0.6364v_0\\\Rightarrow (v_A)_n'=0.07071v_0

From the conservation of momentum along the plane of contact we have

(v_A)_t'=(v_A)_t=v_0\sin45^{\circ}\\\Rightarrow (v_A)_t'=\dfrac{v_0}{\sqrt{2}}

v_A'=\sqrt{(v_A)_t'^2+(v_A)_n'^2}\\\Rightarrow v_A'=\sqrt{(\dfrac{v_0}{\sqrt{2}})^2+(0.07071v_0)^2}\\\Rightarrow \boldsymbol{v_A'=0.711v_0}

Velocity of ball B after impact is 0.6364v_0 and ball A is 0.711v_0.

5 0
3 years ago
Saturated liquid water flows through 2 cm ID stainless steel tubes at 200 g/s. The water is at 80oC and the inside surface of th
EleoNora [17]

Answer:

steel

Explanation:

8 0
3 years ago
Other questions:
  • Liquid flows at steady state at a rate of 2 lb/s through a pump, which operates to raise the elevation of the liquid 100 ft from
    6·1 answer
  • The underground storage of a gas station has leaked gasoline into the ground. Among the constituents of gasoline are benzene, wi
    12·2 answers
  • Define the difference between elastic and plastic deformation in terms of the effect on the crystal lattice structure.
    5·1 answer
  • Consider a 5 m long, air-filled section of a coaxial transmission line, given that the radius of the inner conductor is 10 cm an
    7·1 answer
  • Zionjasean17 zionjasean17
    8·2 answers
  • Identify the different engineering activities/steps in the engineering design process for each steps,summarize in 1–3 sentences
    13·1 answer
  • Which option distinguishes the members of a software deployment process team most likely involved in the following scenario?
    7·1 answer
  • What is the definition of insert view and why do we use it
    10·1 answer
  • Discuss in detail the following methods used to redistribute income and wealth in cash grants?​
    5·1 answer
  • Conduct online research and write a short report on the origin and evolution of the meter as a measurement standard. Discuss how
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!