1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
r-ruslan [8.4K]
3 years ago
13

Jack and Jill have made up since the previous HW assignment, and are now playing on a 10 meter seesaw. Jill is sitting on one en

d of the seesaw, while Jack is some distance (d) from the fulcrum on the other side. If Jack and Jill have masses of 100 kg and 60 kg, respectively, where should Jack sit in order to balance the seesaw?
Physics
1 answer:
Airida [17]3 years ago
6 0

Answer: 3 m.

Explanation:

Neglecting the mass of the seesaw, in order the seesaw to be balanced, the sum of the torques created by  gravity acting on both children  must be 0.

As we are asked to locate Jack at some distance from the fulcrum, we can take torques regarding the fulcrum, which is located at just in the middle of the length of the seesaw.

If we choose the counterclockwise direction as positive, we can write the torque equation as follows (assuming that Jill sits at the left end of the seesaw):

mJill* 5m -mJack* d = 0

60 kg*5 m -100 kg* d =0

Solving for d:

d = 3 m.

You might be interested in
1. Indicate whether these objects or atoms are positively,<br> negatively or neutrally charged.
vovangra [49]

Answer:

Neutrally charged!!!!!!!!!!!!!!!!!!!!!

Explanation:

6 0
3 years ago
You took a running leap off a high diving platform. You were running at 3.1 m/s and hit the water 2.4 seconds later. How high wa
rusak2 [61]

The distance you free-fall from rest is  D = (1/2) (g) (T²) <== memorize this

Height of the platform = (1/2) (9.8 m/s²) (2.4 sec)²

Height = (4.9 m/s²) (5.76 s²)

Height = (4.9/5.76) meters

Height = 28.2 meters (a VERY high platform ... about 93 ft off the water !)

Without air-resistance, your horizontal speed doesn't change.  It's constant.  Traveling 3.1 m/s for 2.4 sec, you cover (3.1 m/s x 2/4 s) = 7.4 m horizontally.

7 0
3 years ago
When atoms of an element are excited, they emit specific wavelengths of light. How is this similar to a fingerprint when Fraunho
Anika [276]

Answer:

As you may know, each element has a "fixed" number of protons and electrons.

These electrons live in elliptical orbits around the nucleus, called valence levels or energy levels.

We know that as further away are the orbits from the nucleus, the more energy has the electrons in it. (And those energies are fixed)

Now, when an electron jumps from a level to another, there is also a jump in energy, and that jump depends only on the levels, then the jump in energy is fixed.

Particularly, when an electron jumps from a more energetic level to a less energetic one, that change in energy must be compensated in some way, and that way is by radiating a photon whose energy is exactly the same as the energy of the jump.

And the energy of a photon is related to the wavelength of the photon, then we can conclude that for a given element, the possible jumps of energy levels are known, meaning that the possible "jumps in energy" are known, which means that the wavelengths of the radiated photons also are known. Then by looking at the colors of the bands (whose depend on the wavelength of the radiated photons) we can know almost exactly what elements are radiating them.

7 0
3 years ago
A satellite circles the Earth in an orbit whose radius is twice the Earth’s radius. The Earth’s mass is 5.98 x 1024 kg, and its
gavmur [86]

Hello!

Recall the period of an orbit is how long it takes the satellite to make a complete orbit around the earth. Essentially, this is the same as 'time' in the distance = speed * time equation. For an orbit, we can define these quantities:

d = 2\pi r ← The circumference of the orbit

speed = orbital speed, we will solve for this later

time = period

Therefore:

T = \frac{2\pi r}{v}

Where 'r' is the orbital radius of the satellite.

First, let's solve for 'v' assuming a uniform orbit using the equation:
v = \sqrt{\frac{Gm}{r}}

G = Gravitational Constant (6.67 × 10⁻¹¹ Nm²/kg²)

m = mass of the earth (5.98 × 10²⁴ kg)

r = radius of orbit (1.276 × 10⁷ m)

Plug in the givens:
v = \sqrt{\frac{(6.67*10^{-11})(5.98*10^{24})}{(1.276*10^7)}} = 5590.983 m/s

Now, we can solve for the period:

T = \frac{2\pi (1.276*10^7)}{5590.983} =\boxed{ 14339.776 s}

7 0
2 years ago
a 74.9 kg person sits at rest on an icy pond holding a physics book. he throws the physics book west at 8.25 m/s and he recoils
kifflom [539]

Answer:

1.95 kg

Explanation:

Momentum is conserved.

m₁ u₁ + m₂ u₂ = m₁ v₁ + m₂ v₂

0 = (74.9) (-0.215) + m (8.25)

m = 1.95

3 0
3 years ago
Other questions:
  • Sally and Maria hypothesized that earthworms lived only in dark, damp places. They measured a one-meter square in a shady spot n
    8·2 answers
  • What will Bronco's acceleration be as he jumps from an airplane and is in free fall with air resistance of 400N?
    7·1 answer
  • A gas occupies 140 mL at 35.0 and 97kPa. what wlll the volume be at STP?
    6·1 answer
  • a force is applied to a box of 10.0 kg for 4.0 s. the box goes from rest to 25 m/s in that time. What is the magnitude of that f
    15·1 answer
  • Which two, or more, of the following actions would increase the energy stored in a parallel plate capacitor when a constant pote
    12·1 answer
  • A spring attached to a mass is at rest in the initial
    13·2 answers
  • A foot player runs 1.6m/s and has a KE of 790 J. What is his mass?
    6·1 answer
  • Read this /https://www.carbonbrief.org/polar-bears-and-climate-change-what-does-the-science-say
    6·1 answer
  • How far will a train with a speed of 20 m/s travel in: 10s
    5·1 answer
  • Does this equation satisfy the Laws of Conservation of Matter and Mass?
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!