Answer:
There you have it. The y-component of air resistance for the fired bullet still depends on the fired speed of the bullet (since it is proportional to v2). A fired bullet (with air resistance) does not hit the ground at the same time as a dropped bullet.
Explanation:
hope this helped ✨
Answer:
A. 456 seconds
Explanation:
We are given that two students walk in the same direction along a straight path at a constant speed.
One student walks with a speed=0.90 m/s
second student walks with speed=1.9 m/s
Total distance covered by each students=780 meter
We have to find who is faster and how much time extra taken by slower student than the faster student.
Time taken by one student who travel with speed 0.90 m/s=
Time=
Time taken by one student who travel with speed 0.90 m/s
=
Time taken by one student who travel with speed 0.90 m/s
=866.6 seconds
Time taken by second student who travel with speed 1.9 m/s=
=410.5 seconds
The second student who travels with speed 1.9 m/s is faster than the student travels with speed 0.90 m/s .
Extra time taken by the student travels with speed 0.90 m/s=866.6-410.5=456.1 seconds
Extra time taken by the student travels with speed 0.90 m/s=456 seconds
Hence, option A is true.
Answer: If the forces on an object are balanced, the net force is zero. If the forces are unbalanced forces, the effects don't cancel each other. Any time the forces acting on an object are unbalanced, the net force is not zero, and the motion of the object changes.
Let's break the question into two parts:
1) The force needed in Ramp scenario.
2) The effort force needed in the lever scenario.
1. Ramp Scenario: In an incline, the only component of cart's weight(
mg) that is in the direction of motion is
. Therefore the effort force in this case must be equal or greater than
.
Now we need to find

.

is the angle between the incline of the ramp and the ground.
Since the height is
5m and the length of the ramp is
8m, 
would be
5/8 or 0.625. Now that you have

, mutiple it with
mg.
=> m*g*

= 20 * 10 * 5 / 8. (Taking g = 10 m/s² for simplicity) = 125N
Therefore, the minimum Effort force you would require in this case is
125N.
2. Lever Scenario:
Just apply "moment action" in this case, which is:


= ?

= mg = 20 * 10 = 200N

= 10m

= 1m
Plug-in the values in the above equation:

= 200/10=
20NAs 20N << 125N, the best choice is to use lever.
Mount. everest is 5.499 miles