1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
sergey [27]
3 years ago
15

A mass weighing 16 pounds stretches a spring (8/3) feet. The mass is initially released from rest from a point 2 feet below the

equilibrium position, and the subsequent motion takes place in a medium that offers a damping force that is numerically equal to 1/2 the instantaneous velocity. Find the equation of motion if the mass is driven by an external force equal to f(t)=10cos(3t).
Mathematics
1 answer:
mezya [45]3 years ago
8 0

Answer with Step-by-step explanation:

Let a mass weighing 16 pounds stretches a spring \frac{8}{3} feet.

Mass=m=\frac{W}{g}

Mass=m=\frac{16}{32}

g=32 ft/s^2

Mass,m=\frac{1}{2} Slug

By hook's law

w=kx

16=\frac{8}{3} k

k=\frac{16\times 3}{8}=6 lb/ft

f(t)=10cos(3t)

A damping force is numerically equal to 1/2 the instantaneous velocity

\beta=\frac{1}{2}

Equation of motion :

m\frac{d^2x}{dt^2}=-kx-\beta \frac{dx}{dt}+f(t)

Using this equation

\frac{1}{2}\frac{d^2x}{dt^2}=-6x-\frac{1}{2}\frac{dx}{dt}+10cos(3t)

\frac{1}{2}\frac{d^2x}{dt^2}+\frac{1}{2}\frac{dx}{dt}+6x=10cos(3t)

\frac{d^2x}{dt^2}+\frac{dx}{dt}+12x=20cos(3t)

Auxillary equation

m^2+m+12=0

m=\frac{-1\pm\sqrt{1-4(1)(12)}}{2}

m=\frac{-1\pmi\sqrt{47}}{2}

m_1=\frac{-1+i\sqrt{47}}{2}

m_2=\frac{-1-i\sqrt{47}}{2}

Complementary function

e^{\frac{-t}{2}}(c_1cos\frac{\sqrt{47}}{2}+c_2sin\frac{\sqrt{47}}{2})

To find the particular solution using undetermined coefficient method

x_p(t)=Acos(3t)+Bsin(3t)

x'_p(t)=-3Asin(3t)+3Bcos(3t)

x''_p(t)=-9Acos(3t)-9sin(3t)

This solution satisfied the equation therefore, substitute the values in the differential equation

-9Acos(3t)-9Bsin(3t)-3Asin(3t)+3Bcos(3t)+12(Acos(3t)+Bsin(3t))=20cos(3t)

(3B+3A)cos(3t)+(3B-3A)sin(3t)=20cso(3t)

Comparing on both sides

3B+3A=20

3B-3A=0

Adding both equation then, we get

6B=20

B=\frac{20}{6}=\frac{10}{3}

Substitute the value of B in any equation

3A+10=20

3A=20-10=10

A=\frac{10}{3}

Particular solution, x_p(t)=\frac{10}{3}cos(3t)+\frac{10}{3}sin(3t)

Now, the general solution

x(t)=e^{-\frac{t}{2}}(c_1cos(\frac{\sqrt{47}t}{2})+c_2sin(\frac{\sqrt{47}t}{2})+\frac{10}{3}cos(3t)+\frac{10}{3}sin(3t)

From initial condition

x(0)=2 ft

x'(0)=0

Substitute the values t=0 and x(0)=2

2=c_1+\frac{10}{3}

2-\frac{10}{3}=c_1

c_1=\frac{-4}{3}

x'(t)=-\frac{1}{2}e^{-\frac{t}{2}}(c_1cos(\frac{\sqrt{47}t}{2})+c_2sin(\frac{\sqrt{47}t}{2})+e^{-\frac{t}{2}}(-c_1\frac{\sqrt{47}}{2}sin(\frac{\sqrt{47}t}{2})+\frac{\sqrt{47}}{2}c_2cos(\frac{\sqrt{47}t}{2})-10sin(3t)+10cos(3t)

Substitute x'(0)=0

0=-\frac{1}{2}\times c_1+10+\frac{\sqrt{47}}{2}c_2

\frac{\sqrt{47}}{2}c_2-\frac{1}{2}\times \frac{-4}{3}+10=0

\frac{\sqrt{47}}{2}c_2=-\frac{2}{3}-10=-\frac{32}{3}

c_2==-\frac{64}{3\sqrt{47}}

Substitute the values then we get

x(t)=e^{-\frac{t}{2}}(-\frac{4}{3}cos(\frac{\sqrt{47}t}{2})-\frac{64}{3\sqrt{47}}sin(\frac{\sqrt{47}t}{2})+\frac{10}{3}cos(3t)+\frac{10}{3}sin(3t)

You might be interested in
Kylie bought 10 chicken wings for $15. What was the cost of the wings in wings per dollar?
Reil [10]

Answer: $2.50

Step-by-step explanation:

3 0
3 years ago
Read 2 more answers
What work do i need to show?
stealth61 [152]
You have to show finding the square root of it ______        ___       __
                                                                       √144x^2  +  √225  =  √0
which will give you 12x+15=0
12x=15
x=5/4
4 0
3 years ago
Can someone help me find the equivalent expressions to the picture below? I’m having trouble
miss Akunina [59]

Answer:

Options (1), (2), (3) and (7)

Step-by-step explanation:

Given expression is \frac{\sqrt[3]{8^{\frac{1}{3}}\times 3} }{3\times2^{\frac{1}{9}}}.

Now we will solve this expression with the help of law of exponents.

\frac{\sqrt[3]{8^{\frac{1}{3}}\times 3} }{3\times2^{\frac{1}{9}}}=\frac{\sqrt[3]{(2^3)^{\frac{1}{3}}\times 3} }{3\times2^{\frac{1}{9}}}

           =\frac{\sqrt[3]{2\times 3} }{3\times2^{\frac{1}{9}}}

           =\frac{2^{\frac{1}{3}}\times 3^{\frac{1}{3}}}{3\times 2^{\frac{1}{9}}}

           =2^{\frac{1}{3}}\times 3^{\frac{1}{3}}\times 2^{-\frac{1}{9}}\times 3^{-1}

           =2^{\frac{1}{3}-\frac{1}{9}}\times 3^{\frac{1}{3}-1}

           =2^{\frac{3-1}{9}}\times 3^{\frac{1-3}{3}}

           =2^{\frac{2}{9}}\times 3^{-\frac{2}{3} } [Option 2]

2^{\frac{2}{9}}\times 3^{-\frac{2}{3} }=(\sqrt[9]{2})^2\times (\sqrt[3]{\frac{1}{3} } )^2 [Option 1]

2^{\frac{2}{9}}\times 3^{-\frac{2}{3} }=(\sqrt[9]{2})^2\times (\sqrt[3]{\frac{1}{3} } )^2

                =(2^2)^{\frac{1}{9}}\times (3^2)^{-\frac{1}{3} }

                =\sqrt[9]{4}\times \sqrt[3]{\frac{1}{9} } [Option 3]

2^{\frac{2}{9}}\times 3^{-\frac{2}{3} }=(2^2)^{\frac{1}{9}}\times (3^{-2})^{\frac{1}{3} }

               =\sqrt[9]{2^2}\times \sqrt[3]{3^{-2}} [Option 7]

Therefore, Options (1), (2), (3) and (7) are the correct options.

6 0
3 years ago
What is the answer for3+8x=4
Schach [20]

Answer: x=1/8

Step-by-step explanation:

Subtract 3 from both sides

3+ 8x=4

8x=1

Divide by 8 on both sides

x=1/8

Hope this helped! :)

3 0
4 years ago
If blueberries cost $4.00 per pound, how many pounds of blueberries can you buy for $1.00?
Masteriza [31]

If x is the number of berries you can buy with 1 dollar,

1 pound of blueberries = $4.00

x pound of berries = $1.00

Lets set up a proportion- because these are directly proportional- when there is more pounds of berries, it will cost more.

\frac{1}{4.00} = \frac{x}{1.00}

Cross multiply

4x=1

Divide both sides by 4 to isolate x

x=1/4 or $0.25

7 0
3 years ago
Other questions:
  • How many 25cm cake tin on 600mm x 500mm tray
    7·1 answer
  • 1 + -6 + -3u + 2 + -5u + -9
    10·1 answer
  • Suppose $50,000 is divided into two bank accounts. one account pays 4% simple interest per year and the other pays 6.4%. after f
    10·1 answer
  • Write an equation to solve this problem:
    5·1 answer
  • How many pairs (a, b), where a and b are positive integers, satisfy the equation a2−b2=105? PLS HELP
    14·1 answer
  • How much coffee will each person get if 3 people share 1/2 pound of coffee? please answer rn
    10·2 answers
  • Please help me with this question!!
    6·1 answer
  • The equation y = 4x represents the relationship between time, x, and distance traveled, y. Which table represents this relations
    14·2 answers
  • A triangular plot of land has one side along a straight road measuring 307 feet A second side makes a 51 angle with the road, an
    9·1 answer
  • Help! <br><br> M/J Grade 8 Pre-Algebra
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!