1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
sergey [27]
3 years ago
15

A mass weighing 16 pounds stretches a spring (8/3) feet. The mass is initially released from rest from a point 2 feet below the

equilibrium position, and the subsequent motion takes place in a medium that offers a damping force that is numerically equal to 1/2 the instantaneous velocity. Find the equation of motion if the mass is driven by an external force equal to f(t)=10cos(3t).
Mathematics
1 answer:
mezya [45]3 years ago
8 0

Answer with Step-by-step explanation:

Let a mass weighing 16 pounds stretches a spring \frac{8}{3} feet.

Mass=m=\frac{W}{g}

Mass=m=\frac{16}{32}

g=32 ft/s^2

Mass,m=\frac{1}{2} Slug

By hook's law

w=kx

16=\frac{8}{3} k

k=\frac{16\times 3}{8}=6 lb/ft

f(t)=10cos(3t)

A damping force is numerically equal to 1/2 the instantaneous velocity

\beta=\frac{1}{2}

Equation of motion :

m\frac{d^2x}{dt^2}=-kx-\beta \frac{dx}{dt}+f(t)

Using this equation

\frac{1}{2}\frac{d^2x}{dt^2}=-6x-\frac{1}{2}\frac{dx}{dt}+10cos(3t)

\frac{1}{2}\frac{d^2x}{dt^2}+\frac{1}{2}\frac{dx}{dt}+6x=10cos(3t)

\frac{d^2x}{dt^2}+\frac{dx}{dt}+12x=20cos(3t)

Auxillary equation

m^2+m+12=0

m=\frac{-1\pm\sqrt{1-4(1)(12)}}{2}

m=\frac{-1\pmi\sqrt{47}}{2}

m_1=\frac{-1+i\sqrt{47}}{2}

m_2=\frac{-1-i\sqrt{47}}{2}

Complementary function

e^{\frac{-t}{2}}(c_1cos\frac{\sqrt{47}}{2}+c_2sin\frac{\sqrt{47}}{2})

To find the particular solution using undetermined coefficient method

x_p(t)=Acos(3t)+Bsin(3t)

x'_p(t)=-3Asin(3t)+3Bcos(3t)

x''_p(t)=-9Acos(3t)-9sin(3t)

This solution satisfied the equation therefore, substitute the values in the differential equation

-9Acos(3t)-9Bsin(3t)-3Asin(3t)+3Bcos(3t)+12(Acos(3t)+Bsin(3t))=20cos(3t)

(3B+3A)cos(3t)+(3B-3A)sin(3t)=20cso(3t)

Comparing on both sides

3B+3A=20

3B-3A=0

Adding both equation then, we get

6B=20

B=\frac{20}{6}=\frac{10}{3}

Substitute the value of B in any equation

3A+10=20

3A=20-10=10

A=\frac{10}{3}

Particular solution, x_p(t)=\frac{10}{3}cos(3t)+\frac{10}{3}sin(3t)

Now, the general solution

x(t)=e^{-\frac{t}{2}}(c_1cos(\frac{\sqrt{47}t}{2})+c_2sin(\frac{\sqrt{47}t}{2})+\frac{10}{3}cos(3t)+\frac{10}{3}sin(3t)

From initial condition

x(0)=2 ft

x'(0)=0

Substitute the values t=0 and x(0)=2

2=c_1+\frac{10}{3}

2-\frac{10}{3}=c_1

c_1=\frac{-4}{3}

x'(t)=-\frac{1}{2}e^{-\frac{t}{2}}(c_1cos(\frac{\sqrt{47}t}{2})+c_2sin(\frac{\sqrt{47}t}{2})+e^{-\frac{t}{2}}(-c_1\frac{\sqrt{47}}{2}sin(\frac{\sqrt{47}t}{2})+\frac{\sqrt{47}}{2}c_2cos(\frac{\sqrt{47}t}{2})-10sin(3t)+10cos(3t)

Substitute x'(0)=0

0=-\frac{1}{2}\times c_1+10+\frac{\sqrt{47}}{2}c_2

\frac{\sqrt{47}}{2}c_2-\frac{1}{2}\times \frac{-4}{3}+10=0

\frac{\sqrt{47}}{2}c_2=-\frac{2}{3}-10=-\frac{32}{3}

c_2==-\frac{64}{3\sqrt{47}}

Substitute the values then we get

x(t)=e^{-\frac{t}{2}}(-\frac{4}{3}cos(\frac{\sqrt{47}t}{2})-\frac{64}{3\sqrt{47}}sin(\frac{\sqrt{47}t}{2})+\frac{10}{3}cos(3t)+\frac{10}{3}sin(3t)

You might be interested in
Find the square root of 146.00048648 up to three places of decimal?
aivan3 [116]
Answer:

12.083

Explanation:

Plug into a calculator.
3 0
3 years ago
If you earned $60 from $500 in sales , What is the percent commission?
Rom4ik [11]

Answer:

300

Step-by-step explanation:

5 0
2 years ago
A square root is categorized as what kind of number?<br><br> Choices:<br> Irrational <br> Rational
anyanavicka [17]
<span>Rational i believe is the answer i ain't for sure though</span>
6 0
3 years ago
A triangle has sides measuring 5 inches and 8 inches. If x represents the length in inches of the third side, which inequality g
Arturiano [62]

Answer:

3 less than or equal to x less than or equal to 13

3 ≤ x ≤ 13

Step-by-step explanation:

6 0
3 years ago
Write each number as a power of the given base. 343; base 7
Sliva [168]
343=7×7×7
343=7³ ~~~~~~~~~~~~~~
3 0
3 years ago
Other questions:
  • HELP PLZ ASAP!!!!!!!!!
    13·1 answer
  • Irrational equations 64^1/3 how to simplify?
    9·2 answers
  • HELP THIS IS DUE IN 7 MINUTES
    11·1 answer
  • What expression can be used to 80% of 120
    8·2 answers
  • Which of the following values do not satisfy the inequality -2x-6&lt;_1
    14·1 answer
  • In the diagram below of circle 0, GO = 8 and
    11·1 answer
  • Ill marbrainlist plss help
    8·2 answers
  • What is the simplified expression for the expression below? -1(2x + 3) - 2(x - 1) O 4x+ O 4x - 2 o 4x + 2 0 4x -​
    8·1 answer
  • Solve the equation using the Properties of Equality.<br><br> 12 − c = −10<br><br> c =
    5·1 answer
  • This is Geometry. Can someone help me find the side length asked for?
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!