Answer: C
Explanation:
Convective heat transfer, or convection, is the transfer of heat from one place to another by the movement of fluids, a process that is essentially the transfer of heat via mass transfer.
Answer:
T = 712.9 N
Explanation:
First, we will find the speed of the wave:
v = fλ
where,
v = speed of the wave = ?
f = frequency = 890 Hz
λ = wavelength = 0.1 m
Therefore,
v = (890 Hz)(0.1 m)
v = 89 m/s
Now, we will find the linear mass density of the wire:

where,
μ = linear mass density of wie = ?
m = mass of wire = 90 g = 0.09 kg
L = length of wire = 1 m
Therefore,

μ = 0.09 kg/m
Now, the tension in wire (T) will be:
T = μv² = (0.09 kg/m)(89 m/s)²
<u>T = 712.9 N</u>
Newton's 2nd law:
Fnet = ma
Fnet is the net force acting on an object, m is the object's mass, and a is the acceleration.
The electric force on a charged object is given by
Fe = Eq
Fe is the electric force, E is the electric field at the point where the object is, and q is the object's charge.
We can assume, if the only force acting on the proton and electron is the electric force due to the electric field, that for both particles, Fnet = Fe
Fe = Eq
Eq = ma
a = Eq/m
We will also assume that the electric field acting on the proton and electron are the same. The proton and electron also have the same magnitude of charge (1.6×10⁻¹⁹C). What makes the difference in their acceleration is their masses. A quick Google search will provide the following values:
mass of proton = 1.67×10⁻²⁷kg
mass of electron = 9.11×10⁻³¹kg
The acceleration of an object is inversely proportional to its mass, so the electron will experience a greater acceleration than the proton.
Force = (mass) x (acceleration)
5 N = (9 kg) x (acceleration)
Divide each side
by 9 kg : 5 N / 9 kg = acceleration
Acceleration = (5/9) kg-meter/sec²-kg
= 0.555... m/s² .
Answer:
a. 13.7 s b. 6913.5 m
Explanation:
a. How much time before being directly overhead should the box be dropped?
Since the box falls under gravity we use the equation
y = ut - 1/2gt² where y = height of plane above ocean = 919 m, u = initial vertical velocity of airplane = 0 m/s, g = acceleration due to gravity = -9.8 m/s² and t = time it takes the airplane to be directly overhead.
So,
y = ut - 1/2gt²
y = 0 × t - 1/2gt²
y = 0 - 1/2gt²
y = - 1/2gt²
t² = -2y/g
t = √(-2y/g)
So, t = √(-2 × 919 m/-9.8 m/s²)
t = √(-1838 m/-9.8 m/s²)
t = √(187.551 m²/s²)
t = 13.69 s
t ≅ 13.7 s
So, the box should be dropped 13.69 s before being directly overhead.
b. What is the horizontal distance between the plane and the victims when the box is dropped?
The horizontal distance x between plane and victims, x = speed of plane × time it takes for box to drop = 505 m/s × 13.69 s = 6913.45 m ≅ 6913.5 m