Answer:
a. v₁ = 16.2 m/s
b. μ = 0.251
Explanation:
Given:
θ = 15 ° , r = 100 m , v₂ = 15.0 km / h
a.
To determine v₁ to take a 100 m radius curve banked at 15 °
tan θ = v₁² / r * g
v₁ = √ r * g * tan θ
v₁ = √ 100 m * 9.8 m/s² * tan 15° = 16.2 m/s
b.
To determine μ friction needed for a frightened
v₂ = 15.0 km / h * 1000 m / 1 km * 1h / 60 minute * 1 minute / 60 seg
v₂ = 4.2 m/s
fk = μ * m * g
a₁ = v₁² / r = 16.2 ² / 100 m = 2.63 m/s²
a₂ = v₂² / r = 4.2 ² / 100 m = 0.18 m/s²
F₁ = m * a₁ , F₂ = m * a₂
fk = F₁ - F₂ ⇒ μ * m * g = m * ( a₁ - a₂)
μ * g = a₁ - a₂ ⇒ μ = a₁ - a₂ / g
μ = [ 2.63 m/s² - 0.18 m/s² ] / (9.8 m/s²)
μ = 0.251
Answer:
37.545 m/s
Explanation:
f' = Actual frequency of horn = 269 Hz
f = Observed frequency of horn = 290 Hz
v = Speed of sound in air = 343 m/s
= Speed of second train = 13.7 m/s
= Speed of first train
From Doppler effect we have
![f=f'\dfrac{v-v_0}{v-v_s}\\\Rightarrow v_s=v-\dfrac{f'}{f}(v-v_0)\\\Rightarrow v_s=343-\dfrac{269}{290}(343-13.7)\\\Rightarrow v_s=37.545\ m/s](https://tex.z-dn.net/?f=f%3Df%27%5Cdfrac%7Bv-v_0%7D%7Bv-v_s%7D%5C%5C%5CRightarrow%20v_s%3Dv-%5Cdfrac%7Bf%27%7D%7Bf%7D%28v-v_0%29%5C%5C%5CRightarrow%20v_s%3D343-%5Cdfrac%7B269%7D%7B290%7D%28343-13.7%29%5C%5C%5CRightarrow%20v_s%3D37.545%5C%20m%2Fs)
The speed of the first train is 37.545 m/s
Answer:
Resistance increases with increase in temperature which depends on power supplied which also depends on voltage.
Thermal expansion will make resistance larger.
Explanation:
Light bulb is a good example of a filament lamp. If we plot the graph of voltage against current we will notice that resistance is constant at constant temperature.
The filament heats up when an electric current passes through it, and produces light as a result.
The resistance of a lamp increases as the temperature of its filament increases. The current flowing through a filament lamp is not directly proportional to the voltage across it.
tensile stress begins to appear in resistor as the temperature rises. Thus, the resistance value increases as the temperature rises. Resistance value can only decrease as the temperature rises in case of thin film resistor with aluminium substrate.
In case of a filament bulb, the resistance will increase as increase in length of the wire. The thermal expansion in this regard is linear expansivity in which resistance is proportional to length of the wire.
Resistance therefore get larger.