Answer:
I believe <u>kinetic / potential</u>
Explanation:
Answer:
2.19 N/m
Explanation:
A damped harmonic oscillator is formed by a mass in the spring, and it does a harmonic simple movement. The period of it is the time that it does one cycle, and it can be calculated by:
T = 2π√(m/K)
Where T is the period, m is the mass (in kg), and K is the damping constant. So:
2.4 = 2π√(0.320/K)
√(0.320/K) = 2.4/2π
√(0.320/K) = 0.38197
(√(0.320/K))² = (0.38197)²
0.320/K = 0.1459
K = 2.19 N/m
The formula is F = ( q1 * q2 ) / r ^ 2
<span>where: q is the individual charges of each ion </span>
<span>r is the distance between the nuclei </span>
<span>The formula is not important but to explain the relationship between the atoms in the compounds and their lattice energy. </span>
<span>From the formula we can first conclude that compounds of ions with greater charges will have a greater lattice energy. This is a direct relationship. </span>
<span>For example, the compounds BaO and SrO, whose ions' charges are ( + 2 ) and ( - 2 ) respectively for each, will have greater lattice energies that the compounds NaF and KCl, whose ions' charges are ( + 1 ) and ( - 1 ) respectively for each. </span>
<span>So Far: ( BaO and SrO ) > ( NaF and KCl ) </span>
<span>The second part required you find the relative distance between the atoms of the compounds. Really, the lattice energy is stronger with smaller atoms, an indirect relationship. </span>
<span>For example, in NaF the ions are smaller than the ions in KCl so it has a greater lattice energy. Because Sr is smaller than Ba, SrO has a greater lattice energy than BaO. </span>
<span>Therefore: </span>
<span>Answer: SrO > BaO > NaF > KCl </span>
<span> Allied Forces. they became the allies.</span>