Answer:
to locate places on earth
Answer:
a) v = 0.9167 m / s, b) A = 0.350 m, c) v = 0.9167 m / s, d) A = 0.250 m
Explanation:
a) to find the velocity of the wave let us use the relation
v = λ f
the wavelength is the length that is needed for a complete wave, in this case x = 5.50 m corresponds to a wavelength
λ = x
λ = x
the period is the time for the wave to repeat itself, in this case t = 3.00 s corresponds to half a period
T / 2 = t
T = 2t
period and frequency are related
f = 1 / T
f = 1 / 2t
we substitute
v = x / 2t
v = 5.50 / 2 3
v = 0.9167 m / s
b) the amplitude is the distance from a maximum to zero
2A = y
A = y / 2
A = 0.700 / 2
A = 0.350 m
c) The horizontal speed of the traveling wave (waves) is independent of the vertical oscillation of the particles, therefore the speed is the same
v = 0.9167 m / s
d) the amplitude is
A = 0.500 / 2
A = 0.250 m
Answer:
D) equal to the flux of electric field through the Gaussian surface B.
Explanation:
Flux through S(A) = Flux through S (B ) = Charge inside/ ∈₀
A. Average speed is weighted mean (1 × 2 + 2 × 3 + 3 × 5 + 4 × 7 + 3 × 9 + 2 × 12.5)/15 = (2 + 6 + 15 + 28 + 27 + 25)/15 = 103/15 = 6.867 b. RMS is square root of 1/15 times sum of squares of speeds Sum of squares is 4 + 9 + 9 + 25 + 25 + 25 + 49 + 49 + 49 + 49 + 81 + 81 + 81 +156.25 + 156.25 = 848.5
c. RMS speed = √(848.5/15) = 7.521
Most likely the speed is the peak in the speed distribution, which is 7.
From tables, the speed of sound at 0°C is approximately
V₁ = 331 m/s (in air)
V₃ = 5130 m/s (in iron)
Distance traveled is
d = 100 km = 10⁵ m
Time required to travel in air is
t₁ = d/V₁ = 10⁵/331 = 302.12 s
Time required to travel in iron is
t₂ = d/V₂ = 10⁵/5130 = 19.49 s
The difference in time is
302.12 - 19.49 = 282.63 s
Answer: 283 s (nearest second)