I only got 50 points (which is not 100). :-)
Look at the graph. At 80 °C, about 38 g of solute is able to dissolve, and that’s for ever 100 g of water. That means that for every 150 grams of water, 57 grams of solute can dissolve (38/2 = 19 + 38 = 57 g) at 80 °C. Since 57 g is greater than 55 g, all for he sodium chloride should dissolve in 150 g of water at 80 °C - you can put all of that into a “mathematical explanation”.
Answer:
LOD = 0,0177
LOQ = 0,0345
Explanation:
Detection limit (LOD) is defined as the lowest signal which, with a stated probability, can be distinguished from a suitable blank signal. In the same way, quantification limit (LOQ) is defined as the lowest analyte concentration that can be quantitatively detected with a stated accuracy and precision.
There are many formulas but the most used are:
LOD = X + 3σ
LOQ = X + 10σ
Where X is average and σ is standard desvation
For the blanks readings the average X is 0,0105 and σ is 0,0024
Thus:
<em>LOD = 0,0177</em>
<em>LOQ = 0,0345</em>
I hope it helps!
There are 3 significant figures in this value, all values before and after the decimal point are significant. As there is a decimal point, the zeros trailing are also significant.
Answer:
4.1 moles of FeCl₃
Explanation:
The reaction expression is given as shown below:
2Fe + 3Cl₂ → 2FeCl₃
Number of moles of Cl₂ = 6.1moles
So;
We know that from the balanced reaction expression:
3 moles of Cl₂ will produce 2 moles of FeCl₃
Therefore 6.1moles of Cl₂ will produce
= 4.1 moles of FeCl₃
The number of moles is 4.1 moles of FeCl₃