Answer:
A. Forces that act perpendicular to the surface and pull an object apart exert a tensile stress on the object.
Explanation:
Tensile stress is referred as a deforming force, in which force acts perpendicular to the surface and pull an object apart, attempting to elongate it.
The tensile stress is a type of normal stress, in which a perpendicular force creates the stress to an object’s surface.
Hence, the correct option is "A."
Answer:
The power developed in HP is 2702.7hp
Explanation:
Given details.
P1 = 150 lbf/in^2,
T1 = 1400°R
P2 = 14.8 lbf/in^2,
T2 = 700°R
Mass flow rate m1 = m2 = m = 11 lb/s Q = -65000 Btu/h
Using air table to obtain the values for h1 and h2 at T1 and T2
h1 at T1 = 1400°R = 342.9 Btu/h
h2 at T2 = 700°R = 167.6 Btu/h
Using;
Q - W + m(h1) - m(h2) = 0
W = Q - m (h2 -h1)
W = (-65000 Btu/h ) - 11 lb/s (167.6 - 342.9) Btu/h
W = (-65000 Btu/h ) - (-1928.3) Btu/s
W = (-65000 Btu/h ) * {1hr/(60*60)s} - (-1928.3) Btu/s
W = -18.06Btu/s + 1928.3 Btu/s
W = 1910.24Btu/s
Note; Btu/s = 1.4148532hp
W = 2702.7hp
A vector is a phenomenon which in mostly used in mathematics and physics and is related to direction and size.
<u>Explanation:</u>
In mathematics and physics, a vector is a component of a vector space. For some, particular vector spaces, the vectors have gotten explicit names, which are recorded beneath. Verifiably, vectors were presented in geometry and material science before the formalization of the idea of vector space.
A vector is an amount or phenomenon that has two autonomous properties: magnitude and direction. The term likewise means the numerical or geometrical portrayal of such an amount.
Answer:
1) The exergy of destruction is approximately 456.93 kW
2) The reversible power output is approximately 5456.93 kW
Explanation:
1) The given parameters are;
P₁ = 8 MPa
T₁ = 500°C
From which we have;
s₁ = 6.727 kJ/(kg·K)
h₁ = 3399 kJ/kg
P₂ = 2 MPa
T₂ = 350°C
From which we have;
s₂ = 6.958 kJ/(kg·K)
h₂ = 3138 kJ/kg
P₃ = 2 MPa
T₃ = 500°C
From which we have;
s₃ = 7.434 kJ/(kg·K)
h₃ = 3468 kJ/kg
P₄ = 30 KPa
T₄ = 69.09 C (saturation temperature)
From which we have;
h₄ = + x₄× = 289.229 + 0.97*2335.32 = 2554.49 kJ/kg
s₄ = + x₄× = 0.94394 + 0.97*6.8235 ≈ 7.563 kJ/(kg·K)
The exergy of destruction, , is given as follows;
= T₀ × = T₀ × × (s₄ + s₂ - s₁ - s₃)
= T₀ × ×(s₄ + s₂ - s₁ - s₃)/(h₁ + h₃ - h₂ - h₄)
∴ = 298.15 × 5000 × (7.563 + 6.958 - 6.727 - 7.434)/(3399 + 3468 - 3138 - 2554.49) ≈ 456.93 kW
The exergy of destruction ≈ 456.93 kW
2) The reversible power output, = + ≈ 5000 + 456.93 kW = 5456.93 kW
The reversible power output ≈ 5456.93 kW.
Answer: b. To avoid having distractions
Trust me it’s definitely option b