Hey, it depends what you subscribed to, or what platform you are trying to unsubscribe from?
Answer:
For any string, we use 
Explanation:
The pumping lemma says that for any string s in the language, with length greater than the pumping length p, we can write s = xyz with |xy| ≤ p, such that xyi z is also in the language for every i ≥ 0. For the given language, we can take p = 2.
Here are the cases:
- Consider any string a i b j c k in the language. If i = 1 or i > 2, we take
and y = a. If i = 1, we must have j = k and adding any number of a’s still preserves the membership in the language. For i > 2, all strings obtained by pumping y as defined above, have two or more a’s and hence are always in the language.
- For i = 2, we can take and y = aa. Since the strings obtained by pumping in this case always have an even number of a’s, they are all in the language.
- Finally, for the case i = 0, we take
, and y = b if j > 0 and y = c otherwise. Since strings of the form b j c k are always in the language, we satisfy the conditions of the pumping lemma in this case as well.
Birds mostly fly in a V because the lead bird cuts al of the wind and has the hardest work and then after a while the lead bird goes to the back and another bird takes his place cutting all the wind for the other birds
Answer: 78.89%
Explanation:
Given : Sample size : n= 1200
Sample mean : 
Standard deviation : 
We assume that it follows Gaussian distribution (Normal distribution).
Let x be a random variable that represents the shaft diameter.
Using formula,
, the z-value corresponds to 2.39 will be :-

z-value corresponds to 2.60 will be :-

Using the standard normal table for z, we have
P-value = 

Hence, the percentage of the diameter of the total shipment of shafts will fall between 2.39 inch and 2.60 inch = 78.89%