EPA Regulations provides a certified course for the technicians involved in the Air-conditioning system.
Answer: Option (b)
<u>Explanation:</u>
The EPA regulation has implemented an act called the "Clean Air Act" under the "section of 609".
This act provides some basic requirements for EPA Regulation such as follows;
- Refrigerant: This unit must be approved by EPA Regulations before being implemented into the atmosphere.
- Servicing: This system provides a certified course for technicians in service and also approve them with proper refrigerant equipment.
- Reuse Refrigerants: The use of recycled refrigerants must be properly monitored before it comes in to serve.
Https://www.slader.com/discussion/question/an-insulated-rigid-tank-is-divided-into-two-equal-parts-by-a-partition-initially-one-part-contains-4/
there will be the answer
Answer:
The Python Code for Fibonacci Sequence is :
# Function for nth Fibonacci number
def Fibonacci(n):
if n<0:
print("Incorrect input")
# First Fibonacci number is 0
elif n==0:
return 0
# Second Fibonacci number is 1
elif n==1:
return 1
else:
return Fibonacci(n-1)+Fibonacci(n-2)
# Driver Program
print(Fibonacci(9))
Explanation:
The Fibonacci numbers are the numbers in the following integer sequence.
0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, ……..
In mathematical terms, the sequence Fn of Fibonacci numbers is defined by the recurrence relation
Fn = Fn-1 + Fn-2
with seed values
F0 = 0 and F1 = 1.
Answer:
maximum stress is 2872.28 MPa
Explanation:
given data
radius of curvature = 3 ×
mm
crack length = 5.5 ×
mm
tensile stress = 150 MPa
to find out
maximum stress
solution
we know that maximum stress formula that is express as
......................1
here σo is applied stress and a is half of internal crack and t is radius of curvature of tip of internal crack
so put here all value in equation 1 we get
σm = 2872.28 MPa
so maximum stress is 2872.28 MPa
Answer:
There are three common methods of charging a battery; constant voltage, constant current and a combination of constant voltage/constant current with or without a smart charging circuit.
Constant voltage allows the full current of the charger to flow into the battery until the power supply reaches its pre-set voltage. The current will then taper down to a minimum value once that voltage level is reached. The battery can be left connected to the charger until ready for use and will remain at that “float voltage”, trickle charging to compensate for normal battery self-discharge.
Constant current is a simple form of charging batteries, with the current level set at approximately 10% of the maximum battery rating. Charge times are relatively long with the disadvantage that the battery may overheat if it is over-charged, leading to premature battery replacement. This method is suitable for Ni-MH type of batteries. The battery must be disconnected, or a timer function used once charged.
Constant voltage / constant current (CVCC) is a combination of the above two methods. The charger limits the amount of current to a pre-set level until the battery reaches a pre-set voltage level. The current then reduces as the battery becomes fully charged. The lead acid battery uses the constant current constant voltage (CC/CV) charge method. A regulated current raises the terminal voltage until the upper charge voltage limit is reached, at which point the current drops due to saturation.