Answer:
You can look it up
Explanation: if you don't know what it is look it up on .
Answer:
Tension in cable BE= 196.2 N
Reactions A and D both are 73.575 N
Explanation:
The free body diagram is as attached sketch. At equilibrium, sum of forces along y axis will be 0 hence
hence

Therefore, tension in the cable, 
Taking moments about point A, with clockwise moments as positive while anticlockwise moments as negative then



Similarly,


Therefore, both reactions at A and D are 73.575 N
Answer:
Tmax= 46.0 lb-in
Explanation:
Given:
- The diameter of the steel rod BC d1 = 0.25 in
- The diameter of the copper rod AB and CD d2 = 1 in
- Allowable shear stress of steel τ_s = 15ksi
- Allowable shear stress of copper τ_c = 12ksi
Find:
Find the torque T_max
Solution:
- The relation of allowable shear stress is given by:
τ = 16*T / pi*d^3
T = τ*pi*d^3 / 16
- Design Torque T for Copper rod:
T_c = τ_c*pi*d_c^3 / 16
T_c = 12*1000*pi*1^3 / 16
T_c = 2356.2 lb.in
- Design Torque T for Steel rod:
T_s = τ_s*pi*d_s^3 / 16
T_s = 15*1000*pi*0.25^3 / 16
T_s = 46.02 lb.in
- The design torque must conform to the allowable shear stress for both copper and steel. The maximum allowable would be:
T = min ( 2356.2 , 46.02 )
T = 46.02 lb-in
Answer:
Option D
160 kHz
Explanation:
Since we must use at least one synchronization bit, total message signal is 15+1=16
The minimum sampling frequency, fs=2fm=2(5)=10 kHz
Bandwith, BW required is given by
BW=Nfs=16(10)=160 kHz