Answer: The overhead percentage is 7.7%.
Explanation:
We call overhead, to all those bytes that are delivered to the physical layer, that don't carry real data.
We are told that we have 700 bytes of application data, so all the other bytes are simply overhead, i.e. , 58 bytes composed by the transport layer header, the network layer header, the 14 byte header at the data link layer and the 4 byte trailer at the data link layer.
So, in order to assess the overhead percentage, we divide the overhead bytes between the total quantity of bytes sent to the physical layer, as follows:
OH % = (58 / 758) * 100 = 7.7 %
Answer:
distance = 22.57 ft
superelevation rate = 2%
Explanation:
given data
radius = 2,300-ft
lanes width = 12-ft
no of lane = 2
design speed = 65-mph
solution
we get here sufficient sight distance SSD that is express as
SSD = 1.47 ut + ..............1
here u is speed and t is reaction time i.e 2.5 second and a is here deceleration rate i.e 11.2 ft/s² and g is gravitational force i.e 32.2 ft/s² and G is gradient i.e 0 here
so put here value and we get
SSD = 1.47 × 65 ×2.5 +
solve it we get
SSD = 644 ft
so here minimum distance clear from the inside edge of the inside lane is
Ms = Rv ( 1 - ) .....................2
here Rv is = R - one lane width
Rv = 2300 - 6 = 2294 ft
put value in equation 2 we get
Ms = 2294 ( 1 - )
solve it we get
Ms = 22.57 ft
and
superelevation rate for the curve will be here as
R = ..................3
here f is coefficient of friction that is 0.10
put here value and we get e
2300 =
solve it we get
e = 2%
Answer:
When you pull the trigger to shoot a shotshell from a shotgun or a cartridge from a rifle or handgun, the firing pin strikes the primer in the base of the cartridge or shotshell. This causes the primer to explode. The spark from the primer ignites the gunpowder, which burns rapidly and converts to a gas.
Explanation:
Answer:
(a) dynamic viscosity =
(b) kinematic viscosity =
Explanation:
We have given temperature T = 288.15 K
Density
According to Sutherland's Formula dynamic viscosity is given by
, here
μ = dynamic viscosity in (Pa·s) at input temperature T,
= reference viscosity in(Pa·s) at reference temperature T0,
T = input temperature in kelvin,
= reference temperature in kelvin,
C = Sutherland's constant for the gaseous material in question here C =120
= 291.15
when T = 288.15 K
For kinematic viscosity :