Answer:
Kinetic And Potential Energy Working Together All forms of kinetic energy are the result of a previous state of potential energy. For example, the stored chemical potential energy of a battery converts to electrical kinetic energy to transport electricity to a light bulb, which radiates thermal kinetic energy.
Explanation:
The amount of energy released when 0.06 kg of mercury condenses at the same temperature can be calculated using its latent heat of fusion which is the opposite of melting. Latent heat of fusion and melting can be used because they have the same magnitude, but opposite signs. Latent heat is the amount of energy required to change the state or phase of a substance. For latent heat, there is no temperature change. The equation is:
E = m(ΔH)
where:
m = mass of substance
ΔH = latent heat of fusion or melting
According to data, the ΔH of mercury is approximately 11.6 kJ/kg.
E = 0.06kg (11.6 kJ/kg) = 0.696 kJ or 696 J
The answer is D. 697.08 J. Note that small differences could be due to rounding off or different data sources.
Answer:
Increase the pressure of the gas
Explanation:
According to the Pressure law, for a fixed mass of gas, at a constant volume (V), the pressure (P) is directly proportional to the absolute temperature (T).
From the kinetic molecular theory, gases are composed of particles which are in constant motion, colliding with themselves as well as with the walls of their container.
When the temperature of these gas molecules is increased, the molecules acquire more kinetic energy and the rate of collisions increases. Since the container cannot expand, the increase in pressure is due to the increase in collisions between the molecules of the gas as well as with the walls of their container.
Metallic solids or metallic structures experience metallic bonds which are the forces of attractions between the sea of electrons and the nucleus of the metallic atoms. They share a network of highly delocalized electrons.
I therefore think that the packing efficiency decreases as the number of nearest neighbors decreases.