1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
yawa3891 [41]
3 years ago
13

Phillip made a pasta dish using the following ingredients:

Mathematics
1 answer:
igor_vitrenko [27]3 years ago
5 0

Answer:

D

Step-by-step explanation:

2.5 of mozzarella plus 2.75 of ricotta cheese

=5.25 or 5 and 1/4cup

Please mark me brainliest(✿◠‿◠)

You might be interested in
19) Given that f(x)x² - 8x+ 15x² - 25find the horizontal and vertical asymptotes using the limits of the function.A) No Vertical
Tems11 [23]

EXPLANATION

Since we have the function:

f(x)=\frac{x^2-8x+15}{x^2}

Vertical asymptotes:

For\:rational\:functions,\:the\:vertical\:asymptotes\:are\:the\:undefined\:points,\:also\:known\:as\:the\:zeros\:of\:the\:denominator,\:of\:the\:simplified\:function.

Taking the denominator and comparing to zero:

x+5=0

The following points are undefined:

x=-5

Therefore, the vertical asymptote is at x=-5

Horizontal asymptotes:

\mathrm{If\:denominator's\:degree\:>\:numerator's\:degree,\:the\:horizontal\:asymptote\:is\:the\:x-axis:}\:y=0.If\:numerator's\:degree\:=\:1\:+\:denominator's\:degree,\:the\:asymptote\:is\:a\:slant\:asymptote\:of\:the\:form:\:y=mx+b.If\:the\:degrees\:are\:equal,\:the\:asymptote\:is:\:y=\frac{numerator's\:leading\:coefficient}{denominator's\:leading\:coefficient}\mathrm{If\:numerator's\:degree\:>\:1\:+\:denominator's\:degree,\:there\:is\:no\:horizontal\:asymptote.}\mathrm{The\:degree\:of\:the\:numerator}=1.\:\mathrm{The\:degree\:of\:the\:denominator}=1\mathrm{The\:degrees\:are\:equal,\:the\:asymptote\:is:}\:y=\frac{\mathrm{numerator's\:leading\:coefficient}}{\mathrm{denominator's\:leading\:coefficient}}\mathrm{Numerator's\:leading\:coefficient}=1,\:\mathrm{Denominator's\:leading\:coefficient}=1y=\frac{1}{1}\mathrm{The\:horizontal\:asymptote\:is:}y=1

In conclusion:

\mathrm{Vertical}\text{ asymptotes}:\:x=-5,\:\mathrm{Horizontal}\text{ asymptotes}:\:y=1

4 0
2 years ago
5. Paris wants to leave a message on 8 of her
Sladkaya [172]

Answer:

infinite because she can write as mutcha nd on as many asshe wats

5 0
2 years ago
the punking patch its open everyday if its sells 2750 pounds of punkings each dat about how many pounds does it sells in 7 dayas
SSSSS [86.1K]
It's just

2750 times 7

Because they sell 2750 pumpkins a day and the question is how many do they sell in 7 days

So:
2750 x 7 = 
<span>19250 pumpkins
</span>
<span>Hope that helps and correct me if I'm wrong!</span><span>

</span>
8 0
4 years ago
Evaluate the integral, show all steps please!
zalisa [80]

Answer:

\dfrac{3}{2} \ln |x-4| - \dfrac{1}{2} \ln |x+2| + \text{C}

Step-by-step explanation:

<u>Fundamental Theorem of Calculus</u>

\displaystyle \int \text{f}(x)\:\text{d}x=\text{F}(x)+\text{C} \iff \text{f}(x)=\dfrac{\text{d}}{\text{d}x}(\text{F}(x))

If differentiating takes you from one function to another, then integrating the second function will take you back to the first with a constant of integration.

Given indefinite integral:

\displaystyle \int \dfrac{x+5}{(x-4)(x+2)}\:\:\text{d}x

Take <u>partial fractions</u> of the given fraction by writing out the fraction as an <u>identity</u>:

\begin{aligned}\dfrac{x+5}{(x-4)(x+2)} & \equiv \dfrac{A}{x-4}+\dfrac{B}{x+2}\\\\\implies \dfrac{x+5}{(x-4)(x+2)} & \equiv \dfrac{A(x+2)}{(x-4)(x+2)}+\dfrac{B(x-4)}{(x-4)(x+2)}\\\\\implies x+5 & \equiv A(x+2)+B(x-4)\end{aligned}

Calculate the values of A and B using substitution:

\textsf{when }x=4 \implies 9 = A(6)+B(0) \implies A=\dfrac{3}{2}

\textsf{when }x=-2 \implies 3 = A(0)+B(-6) \implies B=-\dfrac{1}{2}

Substitute the found values of A and B:

\displaystyle \int \dfrac{x+5}{(x-4)(x+2)}\:\:\text{d}x = \int \dfrac{3}{2(x-4)}-\dfrac{1}{2(x+2)}\:\:\text{d}x

\boxed{\begin{minipage}{5 cm}\underline{Terms multiplied by constants}\\\\$\displaystyle \int ax^n\:\text{d}x=a \int x^n \:\text{d}x$\end{minipage}}

If the terms are multiplied by constants, take them outside the integral:

\implies \displaystyle \dfrac{3}{2} \int \dfrac{1}{x-4}- \dfrac{1}{2} \int \dfrac{1}{x+2}\:\:\text{d}x

\boxed{\begin{minipage}{5 cm}\underline{Integrating}\\\\$\displaystyle \int \dfrac{f'(x)}{f(x)}\:\text{d}x=\ln |f(x)| \:\:(+\text{C})$\end{minipage}}

\implies \dfrac{3}{2} \ln |x-4| - \dfrac{1}{2} \ln |x+2| + \text{C}

Learn more about integration here:

brainly.com/question/27805589

brainly.com/question/28155016

4 0
2 years ago
Pls pls pls pls pls pls pls answer it pls :(
amid [387]

Answer:

1. BC≅DC ; AC≅EC

2. ∠BCD≅∠ACE and ∠BCA≅∠DCE

3. SAS (side angle side)

Step-by-step explanation:

5 0
2 years ago
Other questions:
  • find the mean,median,and mode of the data: 0,100,25,25,25.Which outlier,0, 100, affects the data more?
    10·1 answer
  • Which of the following represents the most accurate estimation of 65+77
    5·1 answer
  • In how many ways can 13 people be divided into four groups with 3, 6, 2 and 2 people respectively?
    10·1 answer
  • Please solve this help
    12·1 answer
  • The distance between the two cities is about 920,000 meters. If the train travels at a speed of 230 kilometers per hour, how lon
    11·1 answer
  • Enter the value of n so the expression (-y + 5.3) + (7.2y - 9) is equivalent to 6.2y + n.
    5·1 answer
  • I'm struggling but any way to make it easy ??,
    10·1 answer
  • Broo help me my dudes
    12·1 answer
  • (10x-4)+(-7+x)<br> Find the sum<br><br> Please Help!!!!
    11·1 answer
  • 2. Write each of the following in set builder form. A = [5, 10, 15,20]​
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!