You need to divide the motion into its component: vertical and horizontal motion.
The time taken to fall vertically from the cliff is equal to the time taken to move horizontally.
Using the vertical component, which is an accelerated motion with an initial velocity equal to zero, we can solve for t:
h = 1/2 · g · t²
t = √(2·h / g)
= √(2·50 / 9.8)
= 3.2 s
Horizontally, it is a constant motion:
d = v · t
= 20 · 3.2
= 64 m
The ball will strike the ground at a distance of 64 meters from the cliff.
Weathering and rock slides
Answer:
Acceleration due to gravity will be 
Explanation:
We have given gauge pressure P = 3.8 atm = 3.8×101325 = 385035 Pa
Depth h = 24.3 m
Density 
We have find the acceleration due to gravity at the surface of planet
We know that pressure is given by

So 

Acceleration due to gravity will be 
Assume the snow is uniform, and horizontal.
Given:
coefficient of kinetic friction = 0.10 = muK
weight of sled = 48 N
weight of rider = 660 N
normal force on of sled with rider = 48+660 N = 708 N = N
Force required to maintain a uniform speed
= coefficient of kinetic friction * normal force
= muK * N
= 0.10 * 708 N
=70.8 N
Note: it takes more than 70.8 N to start the sled in motion, because static friction is in general greater than kinetic friction.