Part A:
For this part we’re assuming all the kinetic energy of the moving bumper car is converted into elastic potential energy in the spring since the car is brought to rest. Therefore you can find the total kinetic energy to get your answer:
KE = ½ mv^2
KE = ½ (200)(8)^2
KE = 6400 J
Part B:
Now you can use Hooke’s law to find the force:
F = kx
F = (5000)(0.2)
F = 1000 N
Answer:

Explanation:
GIVEN
diameter = 15 fm =
m
we use here energy conservation

there will be some initial kinetic energy but after collision kinetic energy will zero

on solving these equations we get kinetic energy initial
J ..............(i)
That is, the alpha particle must be fired with 35.33 MeV of kinetic energy. An alpha particle with charge q = 2 e
and gains kinetic energy K =e∆V ..........(ii)
by accelerating through a potential difference ∆V
Thus the alpha particle will
just reach the
nucleus after being accelerated through a potential difference ∆V
equating (i) and second equation we get
e∆V = 35.33 Me V

Answer:
3. if you increase your mass you also increase the gravitational pull
6. Radiant energy doesn't depend on a medium and sound energy is dependent on a medium.
Explanation:
i hope this helps-
Answer:
five characteristics: Wavelength, Amplitude, Time-Period, Frequency and Velocity or Speed
Explanation:
Given that,
The mean kinetic energy of the emitted electron, 
(a) The relation between the kinetic energy and the De Broglie wavelength is given by :



(b) According to Bragg's law,

n = 1
For nickel, 



As the angle made is very small, so such an electron is not useful in a Davisson-Germer type scattering experiment.