Answer:
X = 5
Explanation:
The molar ratio of water to copper(II) sulfate must be found.
The mass of water that must have been eliminated from the salt is found by the difference in weight before and after:
(500 g) - (320 g) = 180 g water eliminated
The moles of water (MW 18.02 g/mol) is then found:
(180 g) / (18.02g/mol) = 9.9889...mol
The mass of the dehydrated copper(II) sulfate (MW 159.609 g/mol) is converted to moles:
(320 g) / (159.609 g/mol) = 2.004899...mol
The molar proportion of water to the copper(II) sulfate is then calculated:
(9.9889...mol H₂O) / (2.0034899...mol CuSO₄) ≅ 5
Answer:- Oxidation number of Cl does not change as it is -1 on both sides.
Explanations:- oxidation number of Mg on reactant side is 0 as it is in its elemental form(not combined with another element).
Oxidation number of hydrogen in its compounds is +1, so if H is +1 in HCl the oxidation number of Cl is -1 as the sum has to be zero.
On product side, Mg oxidation number is +2 as the oxidation number of alkaline earth metals in their compounds is +2.
Two Cl are present in magnesium chloride, so if Mg is +2 then Cl is -1.
Oxidation number of H on product side is 0 as it is present in its elemental for,
,
So, it is only chlorine(Cl) whose oxidation number does not change for the given equation.
Carbons starting from the left end:
- sp²
- sp²
- sp²
- sp
- sp
Refer to the sketch attached.
<h3>Explanation</h3>
The hybridization of a carbon atom depends on the number of electron domains that it has.
Each chemical bond counts as one single electron domain. This is the case for all chemical bonds: single, double, or triple. Each lone pair also counts as one electron domain. However, lone pairs are seldom seen on carbon atoms.
Each carbon atom has four valence electrons. It can form up to four chemical bonds. As a result, a carbon atom can have up to four electron domains. It has a minimum of two electron domains, with either two double bonds or one single bond and one triple bond.
- A carbon atom with four electron domains is sp³ hybridized;
- A carbon atom with three electron domains is sp² hybridized;
- A carbon atom with two electron domains is sp hybridized.
Starting from the left end (H₂C=CH-) of the molecule:
- The first carbon has three electron domains: two C-H single bonds and one C=C double bond; It is sp² hybridized.
- The second carbon has three electron domains: one C-H single bond, one C-C single bond, and one C=C double bond; it is sp² hybridized.
- The third carbon has three electron domains: two C-C single bonds and one C=O double bond; it is sp² hybridized.
- The fourth carbon has two electron domains: one C-C single bond and one C≡C triple bond; it is sp hybridized.
- The fifth carbon has two electron domains: one C-H single bond and one C≡C triple bond; it is sp hybridized.
The given question is incomplete. The complete question is :
A chemist prepares a solution of barium acetate by measuring out 32 g of barium acetate into a 350 ml volumetric flask and filling the flask to the mark with water. Calculate the concentration in of the chemist's barium acetate solution. Round your answer to significant digits.
Answer: The concentration of barium acetate solution is 0.375 mol/L
Explanation:
Molarity of a solution is defined as the number of moles of solute dissolved per liter of the solution.

where,
n = moles of solute
= volume of solution in ml
moles of
= 
Now put all the given values in the formula of molality, we get


Therefore, the concentration of solution is 0.375 mol/L