<span>Your answer would be ....A.the moon’s shadow covers all of Earth during a solar eclipse.</span>
Using the law of constant proportions which says that within the same compound, elements exist in fixed ratios.
Therefore; we can use the ratio of total mass to the mass of carbon, to determine the amount of carbon in another sample.
Mass C / Mass CH4 = Mass C / Mass CH4
43.2 g / 57.6 g = Mass C / 37.8 g
Mass C = 37.8 g × 43.2 g / 57.6 g
= 28.35 g
Hence; the percentage of carbon will be;
=(28.35/ 37.8 )× 100%
= 75 %
Thus; 75% of 37.8 g of methane is carbon
Answer:
Volume of dry gas at STP = 0.432 liters or 432 ml
Explanation:
Given:
Pressure (P) = 740 mmHg - 24 mmHg = 716 mmHg
Temperature (t) = 25 degrees C + 273 K = 298 K
500 ml = 0.5 l
Find:
Volume of dry gas at STP
Computation:
[P1][V1] / T1 = [P2][V2] / T2
[716][0.5] / 298 K = [760][ x Liters] / 273 K
x = 0.432 Liters
Volume of dry gas at STP = 0.432 liters or 432 ml
The atomic mass of the element would simply be equal to
the sum of the weighted average of each isotope, that is:
atomic mass = 59.015 amu * 0.717 + 62.011 amu * (1 – 0.717)
<span>atomic mass = 59.863 amu</span>
The number of C atoms in 0.524 moles of C is 3.15 atoms.
The number of
molecules in 9.87 moles
is 59.43 molecules.
The moles of Fe in 1.40 x
atoms of Fe is 0.23 x 
The moles of
in 2.30x
molecules of
is 3.81.
<h3>What are moles?</h3>
A mole is defined as 6.02214076 ×
of some chemical unit, be it atoms, molecules, ions, or others. The mole is a convenient unit to use because of the great number of atoms, molecules, or others in any substance.
A. The number of C atoms in 0.524 mole of C:
6.02214076 ×
x 0.524 mole
3.155601758 atoms =3.155 atoms
B. The number of
molecules in 9.87 moles of
:
6.02214076 ×
x 9.87
59.4385293 molecules= 59.43 molecules
C. The moles of Fe in 1.40 x
atoms of Fe:
1.40 x
÷ 6.02214076 × 
0.2324754694 x
moles.
0.23 x
moles.
D. The moles of
in 2.30x
molecules of
:
2.30x
÷ 6.02214076 × 
3.819239854 moles=3.81 moles
Learn more about moles here:
brainly.com/question/8455949
#SPJ1