What best describes the result is a mixture
<span>In the field of science, usually, the product of an experiment is
computed ahead to understand if it reached a specific objective. It would reach
greater than 100% of percent yield if the factors include faster reaction rates;
proper handling of the reactants, no outside contaminants, and the procedure of
the experiment is followed smoothly. It would reach lesser than 100% percent yield
if the experiment is not followed, external factors such as contamination from
the environment (wind, moisture, etc). </span>
Answer:
Option C. Triple the number of moles
Explanation:
From the ideal gas equation:
PV = nRT
Where:
P is the pressure
V is the volume
n is the number of mole
R is the gas constant
T is the absolute temperature.
Making V the subject of the above equation, we have:
PV = nRT
Divide both side by P
V = nRT / P
Thus, we can say that the volume (V) is directly proportional to both the number of mole (n) and absolute temperature (T) and inversely proportional to the pressure (P). This implies that and increase in either the number of mole, the absolute temperature and a decrease in the presence will cause the volume to increase.
Thus, the correct option is option C triple the number of moles. This can further be seen as illustrated below:
Initial volume (V1) = 12 L
Initial mole (n1) = 0.5 mole
Final mole (n2) = triple the initial mole = 3 × 0.5 = 1.5 mole
Final volume (V2) =?
From:
V = nRT / P, keeping T and P constant, we have:
V1/n1 = V2/n2
12/0.5 = V2/1.5
24 = V2/1.5
Cross multiply
V2 = 24 × 1.5
V2 = 36 L.
Thus Option C gives the correct answer to the question.
Answer:
3.8 x 10²⁴molecules
Explanation:
Given parameters:
Number of moles = 6.32moles
Unknown:
Number of molecules = ?
Solution:
The number of moles can be used to derive the number of molecules found within a substance.
Now,
1 mole of substance contains 6.02 x 10²³ molecules
6.32 mole of PBr₃ will contain 6.32 x 6.02 x 10²³ = 3.8 x 10²⁴molecules
Answer:
As you cool a matter to absolute zero, their kinetic energy reduces significantly and the molecules slows down and begins to aggregate together. ... As heat is added, the molecules gain more kinetic energy. This shown in their increase motion. When heat is withdrawn, the particles slows down hope this helped