First, we need to get n1 (no.of moles of water ): when
mass of water = 0.0203 g and the volume = 1.39 L
∴ n1 = mass / molar mass of water
= 0.0203g / 18 g/mol
= 0.00113 moles
then we need to get n2 (no of moles of water) after the mass has changed:
when the mass of water = 0.146 g
n2 = mass / molar mass
= 0.146g / 18 g/ mol
= 0.008 moles
so by using the ideal gas formula and when the volume is not changed:
So, P1/n1 = P2/n2
when we have P1 = 1.02 atm
and n1= 0.00113 moles
and n2 = 0.008 moles
so we solve for P2 and get the pressure
∴P2 = P1*n2 / n1
=1.02 atm *0.008 moles / 0.00113 moles
= 7.22 atm
∴the new pressure will be 7.22 atm
<span><em><u>Climatology </u>is a <u>subspecialty </u>of a </em><u><em>Climate</em></u><em> and for how the <u>climate</u> changes. This is averaged out from over a set of a period of time.
<u>I hope this helps! ;D</u></em></span>
Answer:
Hexane.
Explanation:
Hello!
In this case, since the general reaction of the compound C4H14 with chlorine is:

Which stands for a substitution chemical reaction in which one chlorine is able to replace one hydrogen and therefore hydrogen chloride gives off; we infer that the initial compound, C4H14, shows off the
formula characteristic of alkanes; in such a way, as it has six carbon atoms, we infer it is hexane.
Best regards!