Answer:

Explanation:
Given that,
A radio wave transmits 38.5 W/m² of power per unit area.
A flat surface of area A is perpendicular to the direction of propagation of the wave.
We need to find the radiation pressure on it. It is given by the formula as follows :

Where
c is speed of light
Putting all the values, we get :

So, the radiation pressure is
.
Those forces are exactly equal.
Gravity always works as a pair of <em>EQUAL</em> forces ... one in each direction
between two masses. Your weight on the Earth is exactly the same as
the Earth's weight on you.
Answer:
Explanation:
Let the critical angle be C .
sinC = 1 / μ where μ is index of refraction .
sinC = 1 /1.2
= .833
C = 56°
Then angle of refraction r = 90 - 56 = 34 ( see the image in attached file )
sin i / sinr = 1.2 , i is angle of incidence
sini = 1.2 x sinr = 1.2 x sin 34 = .67
i = 42°.
<span>
The needle of a compass will always lies along the magnetic
field lines of the earth.
A magnetic declination at a point on the earth’s surface
equal to zero implies that
the horizontal component of the earth’s magnetic field line
at that specific point lies along
the line of the north-south magnetic poles. </span>
The presence of a
current-carrying wire creates an additional <span>
magnetic field that combines with the earth’s magnetic field.
Since magnetic
<span>fields are vector quantities, therefore the magnetic field of
the earth and the magnetic field of the vertical wire must be
combined vectorially. </span></span>
<span>
Where:</span>
B1 = magnetic field of
the earth along the x-axis = 0.45 × 10 ⁻ ⁴ T
B2 = magnetic field due to
the straight vertical wire along the y-axis
We can calculate for B2
using Amperes Law:
B2 = μ₀ i / [ 2 π R ]
B2 = [ 4π × 10 ⁻ ⁷ T • m / A ] ( 36 A ) / [ 2 π (0.21 m ) ] <span>
B2 = 5.97 × 10 ⁻ ⁵ T = 0.60 × 10 ⁻ ⁴ T </span>
The angle can be
calculated using tan function:<span>
tan θ = y / x = B₂ / B₁ = 0.60 × 10 ⁻ ⁴ T / 0.45 × 10 ⁻ ⁴ T <span>
tan θ = 1.326</span></span>
θ = 53°
<span>
<span>The compass needle points along the direction of 53° west of
north.</span></span>